版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省广安市代市中学2024年数学八年级下册期末预测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列多项式中,不能运用公式进行分解因式的是()A.a2+b2 B.x2﹣9 C.m2﹣n2 D.x2+2xy+y22.把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是()A.a=2,b=3 B.a=-2,b=-3C.a=-2,b=3 D.a=2,b=-33.如图所示的图形中既是轴对称图形,又是中心对称图形的是()A. B. C. D.4.在中招体育考试中,某校甲、乙、丙、丁四个班级的平均分完全一样,方差分别为:=8.2,=21.7,=15,=17.2,则四个班体育考试成绩最不稳定的是()A.甲班 B.乙班 C.丙班 D.丁班5.下列各组条件中,不能判定四边形是平行四边形的是()A., B.,C., D.,6.若关于x的不等式组x-m<07-2x≤1的整数解共5个,则m的取值范围是(A.7<m<8 B.7<m≤8 C.7≤m<8 D.7≤m≤87.若二次根式有意义,则x能取的最小整数值是()A.x=0 B.x=1 C.x=2 D.x=38.已知反比例函数的图象过点M(-1,2),则此反比例函数的表达式为()A.y= B.y=- C.y= D.y=-9.如图,点A,B的坐标分别为(1,4)和(4,4),抛物线的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为,则点D的横坐标最大值为(▲)A.-3 B.1 C.5 D.810.已知,则的关系是()A. B. C. D.二、填空题(每小题3分,共24分)11.某校对n名学生的体育成绩统计如图所示,则n=_____人.12.若八个数据x1,x2,x3,……x8,的平均数为8,方差为1,增加一个数据8后所得的九个数据x1,x2,x3,…x8;8的平均数________8,方差为S2________1.(填“>”、“=”、“<”)13.菱形ABCD的两条对角线长分别为6cm和8cm,则菱形ABCD的面积为_____;周长为______.14.已知四边形是平行四边形,且,,三点的坐标分别是,,则这个平行四边形第四个顶点的坐标为______.15.为了解一批节能灯的使用寿命,宜采用__________的方式进行调查.(填“普查”或“抽样调查”)16.不等式4x﹣6≥7x﹣15的正整数解的个数是______.17.如图,是将绕点顺时针旋转得到的.若点,,在同一条直线上,则的度数是______.18.如图,有一个由传感器A控制的灯,要装在门上方离地面4.5m的墙上,任何东西只要移至该灯5m及5m内,灯就会自动发光,小明身高1.5m,他走到离墙_______的地方灯刚好发光.三、解答题(共66分)19.(10分)如图,点E、F分别在矩形ABCD的边BC、AD上,把这个矩形沿EF折叠后,点D恰好落在BC边上的G点处,且∠AFG=60°.(1)求证:GE=2EC;(2)连接CH、DG,试证明:CH//DG.20.(6分)某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人:他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂招聘新工人若干名(新工人人数少于10人)和抽调的熟练工合作,刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?21.(6分)如图,已知AD=BC,AC=BD.(1)求证:△ADB≌△BCA;(2)OA与OB相等吗?若相等,请说明理由.22.(8分)如图1,已知直线:交轴于,交轴于.(1)直接写出的值为______.(2)如图2,为轴负半轴上一点,过点的直线:经过的中点,点为轴上一动点,过作轴分别交直线、于、,且,求的值.(3)如图3,已知点,点为直线右侧一点,且满足,求点坐标.23.(8分)如图,四边形中,,平分,交于.(1)求证:四边形是菱形;(2)若点是的中点,试判断的形状,并说明理由.24.(8分)计算:(1)(2)已知,试求以a、b、c为三边的三角形的面积.25.(10分)如图,直线与直线,两直线与轴的交点分别为、.(1)求两直线交点的坐标;(2)求的面积.26.(10分)已知一次函数的图象经过点A,B两点.(1)求这个一次函数的解析式;(2)求一次函数的图像与两坐标轴所围成的三角形的面积.
参考答案一、选择题(每小题3分,共30分)1、A【解析】A.不能进行因式分解,故不正确;B.可用平方差公式分解,即x2-9=(x+3)(x-3),故正确;C.可用平方差公式分解,即m2-n2=(m+n)(m-n),故正确;D.可完全平方公式分解,即=(x+y)2,故正确;故选A.2、B【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a、b即可.详解:(x+1)(x-3)=x2-3x+x-3=x2-2x-3所以a=2,b=-3,故选B.点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键.3、D【解析】
根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】解:A、是中心对称图形,不是轴对称图形,故本选项不符合题意;B、不是中心对称图形,是轴对称图形,故本选项不符合题意;C、不是中心对称图形,是轴对称图形,故本选项不符合题意;D、既是中心对称图形,又是轴对称图形,故本选项符合题意.故选:D.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4、B【解析】
方差越小数据越稳定,根据方差的大小即可得到答案.【详解】∵8.2<15<17.2<21.7,∴乙班的体育考试成绩最不稳定,故选:B.【点睛】此题考查方差的运用,方差考查数据稳定性,方差越小数据越稳定,方差越大数据越不稳定.5、B【解析】
根据平行四边形的判定:A、C、D可判定为平行四边形,而B不具备平行四边形的条件,即可得出答案。【详解】A、两组对边分别平行的四边形是平行四边形,故A正确;B、一组对边平行,另一组对边相等的四边形是等腰梯形不一定是平行四边形,故B不正确;C、一组对边平行且相等的四边形是平行四边形,故C正确;D、两组对边分别相等的四边形是平行四边形,故D正确只.【点睛】本题考查了平行四边形的判定方法,熟练掌握平行四边形的判定方法并能进行推理论证是解决问题的关键。6、B【解析】
求出不等式组的解集,再根据已知得出关于m的不等式组,即可打得出答案.【详解】x-m<0①解不等式①得:x<m,解不等式②得:x⩾3,所以不等式组的解集是3⩽x<m,∵关于x的不等式x-m<07-2x⩽1的整数解共有5∴7<m⩽8,故选B.【点睛】此题考查一元一次不等式组的整数解,解题关键在于掌握运算法则.7、B【解析】
直接利用二次根式的定义分析得出答案.【详解】解:∵二次根式有意义,∴3x﹣2≥0,解得:x≥,则x能取的最小整数值是:1.故选:B.【点睛】此题主要考查了二次根式的定义,正确得出m的取值范围是解题关键.8、B【解析】
函数经过一定点,将此点坐标代入函数解析式y=(k≠0),即可求得k的值.【详解】设反比例函数的解析式为y=(k≠0).∵该函数的图象过点M(−1,2),∴2=,得k=−2.∴反比例函数解析式为y=-.故选B.【点睛】本题考查了待定系数法求反比例函数解析式,解题的关键是掌握待定系数法求反比例函数解析式的方法和步骤.9、D【解析】当点C横坐标为-3时,抛物线顶点为A(1,4),对称轴为x=1,此时D点横坐标为5,则CD=8;当抛物线顶点为B(4,4)时,抛物线对称轴为x=4,且CD=8,故C(0,0),D(8,0);由于此时D点横坐标最大,故点D的横坐标最大值为8;故选D.10、D【解析】
将a进行分母有理化,比较a与b即可.【详解】∵,,∴.故选D.【点睛】此题考查了分母有理化,分母有理化时正确选择两个二次根式,使它们的积符合平方差公式是解答问题的关键.二、填空题(每小题3分,共24分)11、1【解析】
根据统计图中的数据,可以求得n的值,本题得以解决.【详解】解:由统计图可得,n=20+30+10=1(人),故答案为:1.【点睛】本题考查折线统计图,解答本题的关键是明确题意,提取统计图中的有效信息解答.12、=<【解析】
根据八个数据x1,x2,x3,……x8,的平均数为8,方差为1,利用平均数和方差的计算方法,可求出,,再分别求出9个数的平均数和方差,然后比较大小就可得出结果【详解】解:∵八个数据x1,x2,x3,……x8,的平均数为8,∴∴,∵增加一个数8后,九个数据x1,x2,x3,8…x8的平均数为:;∵八个数据x1,x2,x3,……x8,的方差为1,∴∴∵增加一个数8后,九个数据x1,x2,x3,8…x8的方差为:;故答案为:=,<【点睛】本题考查方差,算术平均数等知识,解题的关键是熟练掌握算术平均数与方差的求法,属于中考常考题型.13、24cm220cm【解析】分析:菱形的面积等于对角线积的一半;菱形的对角线互相垂直且平分构建直角三角形后,用勾股定理求.详解:根据题意得,菱形的面积为×6×8=24cm2;菱形的周长为4×=4×5=20cm.故答案为24cm2;20cm.点睛:本题考查了菱形的性质,菱形的对角线互相平分且垂直,菱形的面积等于对角线积的一半,菱形中常常根据对角线的性质构造直角三角形,用勾股定理求线段的长.14、或或.【解析】
根据平行四边形的性质,分别以BC、AC、AB为对角线,分三种情况进行分析,即可求得答案.【详解】解:由平行四边形的性质可知:当以BC为对角线时,第四个顶点的坐标为D1;当以AC为对角线时,第四个顶点的坐标为D2;当以AB为对角线时,第四个顶点的坐标为D3;故答案为:或或.【点睛】本题考查了平行四边形的性质:平行四边形的对边平行且相等.解此题的关键是分类讨论数学思想的运用.15、抽样调查【解析】
了解一批节能灯的使用寿命,对灯泡进行调查具有破坏性,故不宜采用普查,应采用抽样调查.【详解】了解一批节能灯的使用寿命,调查过程带有破坏性,只能采取抽样调查,而不能将整批节能灯全部用于实验。所以填抽样调查。【点睛】本题考查了抽样调查的定义,掌握抽样调查和普查的定义是解决本题的关键.16、3【解析】
首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可【详解】不等式的解集是x≤3,故不等式4x-6≥7x-15的正整数解为1,2,3故答案为:3【点睛】此题考查一元一次不等式的整数解,掌握运算法则是解题关键17、【解析】
根据旋转的性质,即可求出的度数.【详解】旋转,,,,.故答案为:.【点睛】本题考查了三角形的旋转问题,掌握旋转的性质是解题的关键.18、4米【解析】
过点C作CE⊥AB于点E,则人离墙的距离为CE,在Rt△ACE中,根据勾股定理列式计算即可得到答案.【详解】如图,传感器A距地面的高度为AB=4.5米,人高CD=1.5米,过点C作CE⊥AB于点E,则人离墙的距离为CE,由题意可知AE=AB-BE=4.5-1.5=3(米).当人离传感器A的距离AC=5米时,灯发光.此时,在Rt△ACE中,根据勾股定理可得,CE2=AC2-AE2=52-32=42,∴CE=4米.即人走到离墙4米远时,灯刚好发光.【点睛】本题考查了勾股定理的应用,解题的关键是熟练的掌握勾股定理的定义与运算.三、解答题(共66分)19、(1)见解析;(2)见解析.【解析】
(1)由折叠得到D=∠FGH=90°,∠C=∠H=90°,EC=EH,由矩形得出边平行,内角为直角,将问题转化到△EGH中,由30°所对的直角边等于斜边的一半,利用等量代换可得结论;
(2)由轴对称的性质,对称轴垂直平分对应点所连接的线段,垂直于同一直线的两条直线互相平行得出结论.【详解】证明:(1)由折叠知:CE=HE,在矩形ABCD中,AD//BC,∴∠AFG=∠FGE=∴∠HGE=∠FGH-∠FGE=在RtΔGHE中,∠HGE=∴HE=又∵CE=HE,∴CE=12(2)连接DG、CH由折叠知:点D和G、点C和点H都关于直线EF成轴对称∴EF⊥DG,∴DG//CH【点睛】考查矩形的性质、轴对称的性质,直角三角形的性质等知识,合理的将问题转化到一个含有30°的直角三角形是解决问题的关键.20、(1)每名熟练工每月可以安装4辆电动车,新工人每月分别安装2辆电动汽车.(2)①调熟练工1人,新工人8人;②调熟练工2人,新工人6人;③调熟练工3人,新工人4人;④调熟练工4人,新工人2人.【解析】
(1)设每名熟练工每月可以安装x辆电动车,新工人每月分别安装y辆电动汽车,根据安装8辆电动汽车和安装14辆电动汽车两个等量关系列出方程组,然后求解即可;
(2)设调熟练工m人,招聘新工人n名,根据一年的安装任务列出方程整理用m表示出n,然后根据人数m是整数讨论求解即可.【详解】(1)设每名熟练工每月可以安装x辆电动车,新工人每月分别安装y辆电动汽车,
根据题意得:,
解之得.
答:每名熟练工每月可以安装4辆电动车,新工人每月分别安装2辆电动汽车;
(2)设抽调熟练工m人,招聘新工人n名,由题意得:12(4m+2n)=240,
整理得,n=10-2m,
∵0<n<10,
∴当m=1,2,3,4时,n=8,6,4,2,
即:①调熟练工1人,新工人8人;②调熟练工2人,新工人6人;③调熟练工3人,新工人4人;④调熟练工4人,新工人2人.【点睛】本题考查了二元一次方程的应用,解二元一次方程组,(1)理清题目数量关系列出方程组是解题的关键,(2)用一个未知数表示出另一个未知数,是解题的关键,难点在于考虑人数是整数.21、(1)详见解析;(2)OA=OB,理由详见解析.【解析】试题分析:(1)根据SSS定理推出全等即可;(2)根据全等得出∠OAB=∠OBA,根据等角对等边即可得出OA=OB.试题解析:(1)证明:∵在△ADB和△BCA中,AD=BC,AB=BA,BD=AC,∴△ADB≌△BCA(SSS);(2)解:OA=OB,理由是:∵△ADB≌△BCA,∴∠ABD=∠BAC,∴OA=OB.考点:全等三角形的判定与性质;等腰三角形的判定22、(1)k=-1;(2)或;(3)【解析】
(1)将代入,求解即可得出;(2)先求得直线为,用含t的式子表示MN,根据列出方程,分三种情况讨论,可得到或;(3)在轴上取一点,连接,作交直线于,作轴于,再证出,得到直线的解析式为,将代入,得,可得出.【详解】解:(1)将代入,得,解得.故答案为:(2)∵在直线中,令,得,∴,∵,∴线段的中点的坐标为,代入,得,∴直线为,∵轴分别交直线、于、,,∴,,∴,,∵,∴,分情况讨论:①当时,,解得:.②当时,,解得:.③当时,,解得:,舍去.综上所述:或.(3)在轴上取一点,连接,作交直线于,作轴于,∴,∴,∵,∴,∵,∴,∴,∴,∴,∴,∴,∴,,∴,∴,∴直线的解析式为,将代入,得,∴.【点睛】本题考查一次函数与几何的综合.要准确理解题意,运用数形结合、分类讨论的思想解答.23、(1)详见解析;(2)是直角三角形,理由详见解析.【解析】
(1)利用两组对边平行可得该四边形是平行四边形,进而证明一组邻边相等可得该四边形为菱形;(2)利用菱形的邻边相等的性质及等腰三角形的性质可得两组角相等,进而证明∠ACB为直角即可.【详解】(1)∵AB∥CD,CE∥AD,∴四边形AECD为平行四边形,∠2=∠3,又∵AC平分∠BAD,∴∠1=∠2,∴∠1=∠3,∴AD=DC,∴平行四边形AECD是菱形;(2)直角三角形,理由如下:∵四边形AECD是菱形,∴AE=EC,∴∠2=∠4,∵AE=EB,∴EB=EC,∴∠5=∠B,又因为三角形内角和为180°,∴∠2+∠4+∠5+∠B=180°,∴∠ACB=∠4+∠5=90°,∴△ACB为直角三角形.【点睛】本题考查了平行四边形的判定,菱形的判定与性质,直角三角形的判定,熟练掌握和灵活运用相关知识是解题的关键.注意数形结合思想的运用.24、(1);(2)以a、b、c为三边
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024全新铝合金门窗供货合同范本下载
- 《关于课堂教学点评》课件
- 2024年度演艺经纪合同纠纷
- 《钢结构设计规范》课件
- 04版智能家居系统研发与销售合同
- 2024年度网络安全服务合同:某企业聘请专业公司保护信息系统3篇
- 2024年度售后服务合同:汽车4S店售后服务合同2篇
- 《宝洁公司战略分析》课件
- 《铝合金感应加热炉》课件
- 2024年度墙板生产设备采购合同3篇
- 浙江省绍兴市高三上学期11月选考科目诊断性考试化学试题
- 《急救知识普及》课件
- 广州市小学数学学科第二届青年教师解题比赛初赛试题(答案)
- 校园游泳馆项目运营方案
- Unit3ConservationWritingWorkshop课件-高中英语北师大版选择性
- 软件项目管理学习心得体会(19篇)
- 包装厂车间管理制度
- 抖音+剪映+Premiere短视频制作从新手到高手
- 小学教育课件教案学校突发事件:学生应对灾难突发事件的自救与互救技巧
- 医院装修改造项目投标方案(技术标)
- 粤教版科学三年级上册全册试卷(含答案)
评论
0/150
提交评论