浙江省宁波市慈溪市阳光实验中学2024年八年级数学第二学期期末经典试题含解析_第1页
浙江省宁波市慈溪市阳光实验中学2024年八年级数学第二学期期末经典试题含解析_第2页
浙江省宁波市慈溪市阳光实验中学2024年八年级数学第二学期期末经典试题含解析_第3页
浙江省宁波市慈溪市阳光实验中学2024年八年级数学第二学期期末经典试题含解析_第4页
浙江省宁波市慈溪市阳光实验中学2024年八年级数学第二学期期末经典试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省宁波市慈溪市阳光实验中学2024年八年级数学第二学期期末经典试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.若关于x的方程的解为负数,则m的取值范围是()A. B. C. D.2.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为6,则重叠部分四边形EMCN的面积为()A.9 B.12 C.16 D.323.下列各组数是三角形的三边长,能组成直角三角形的一组数是()A.2,2,3 B.4,6,8 C.2,3, D.,,4.如图,△ABC是等边三角形,被一平行于BC的矩形所截,AB被截成三等分,则图中阴影部分的面积是△ABC的面积的A. B. C. D.5.下列式子是最简二次根式的是A. B.C. D.6.已知二次函数(为常数)的图象与轴的一个交点为,则关于的一元二次方程的两实数根是()A., B., C., D.,7.轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则C处与灯塔A的距离是()海里.A. B. C.50 D.258.不等式组的解集在数轴上表示为A. B.C. D.9.若式子有意义,则x的取值范围是()A. B. C. D.10.在平行四边形ABCD中,若∠A+∠C=260°,则∠D的度数为(

)A.120° B.100° C.50° D.130°二、填空题(每小题3分,共24分)11.若正多边形的一个内角等于,则这个多边形的边数是__________.12.如图,已知函数y=2x+b与函数y=kx-3的图象交于点P(4,-6),则不等式kx-3>2x+b的解集是__________.13.直线y=2x+1经过点(a,0),则a=________.14.若一组数据1,2,3,x,0,3,2的众数是3,则这组数据的中位数是_____.15.如图,ΔABC中,E为BC的中点,AD平分∠BAC,BD⊥AD,若AB=10,AC=16,则DE=______.16.据统计,2019年全国高考报名人数达10310000人,比去年增加了560000,其中数据10310000用科学计数法表示为_________17.一个多边形的内角和是它的外角和的5倍,则这个多边形的边数为____________。18.如图,矩形纸片ABCD,AB=2,∠ADB=30°,沿对角线BD折叠(使△ABD和△EBD落在同一平面内),A、E两点间的距离为______▲_____.三、解答题(共66分)19.(10分)在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上,请解答下列问题(1)画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1,并写出点C1的坐标;(2)画出将△ABC关于原点O对称的图形△A2B2C2,并写出点C2的坐标.20.(6分)如图1,△ABC中,∠ABC=90°,AB=1,BC=2,将线段BC绕点C顺时旋转90°得到线段CD,连接AD.(1)说明△ACD的形状,并求出△ACD的面积;(2)把等腰直角三角板按如图2的方式摆放,顶点E在CB边上,顶点F在DC的延长线上,直角顶点与点C重合.从A,B两题中任选一题作答:A.如图3,连接DE,BF,①猜想并证明DE与BF之间的关系;②将三角板绕点C逆时针旋转α(0°<α<90°),直接写出DE与BF之间的关系.B.将图2中的三角板绕点C逆时针旋转α(0<α<360°),如图4所示,连接BE,DF,连接点C与BE的中点M,①猜想并证明CM与DF之间的关系;②当CE=1,CM=72时,请直接写出α的值21.(6分)计算题(1)(2)22.(8分)我市某林场计划购买甲、乙两种树苗共800株,甲种树苗每株24元,乙种树苗每株30元.相关资料表明:甲、乙两种树苗的成活率分别为85%、90%.(1)若购买这两种树苗共用去21000元,则甲、乙两种树苗各购买多少株?(2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株?(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.23.(8分)在平面直角坐标系中,设两数(,是常数,).若函数的图象过,且.(1)求的值:(2)将函数的图象向上平移个单位,平移后的函数图象与函数的图象交于直线上的同一点,求的值;(3)已知点(为常数)在函数的图象上,关于轴的对称点为,函数的图象经过点,当时,求的取值范围.24.(8分)已知一次函数y=1x-4的图象与x轴、y轴分别相交于点A、B,点P在该函数的图象上,P到x轴、y轴的距离分别为d1,d1.(1)求点A,B的坐标;(1)当P为线段AB的中点时,求d1+d1的值;(3)直接写出d1+d1的范围,并求当d1+d1=3时点P的坐标;(4)若在线段AB上存在无数个点P,使d1+ad1=4(a为常数),求a的值.25.(10分)如图,在平面直角坐标系中,直线与轴,轴分别交于点,点。(1)求点和点的坐标;(2)若点在轴上,且求点的坐标。(3)在轴是否存在点,使三角形是等腰三角形,若存在。请求出点坐标,若不存在,请说明理由。26.(10分)如图,在中,点是的中点,连接并延长,交的延长线于点F.求证:.

参考答案一、选择题(每小题3分,共30分)1、B【解析】

先把m当作已知条件求出x的值,再根据x的值是负数列出关于m的不等式,求出m的取值范围即可.【详解】解:∵1x-m=1+x,∴x=,∵关于x的方程1x-m=1+x的解是负数,∴<0,解得m<-1.故选:B.【点睛】本题考查的是解一元一次不等式,熟知不等式的基本性质是解答此题的关键.2、C【解析】

过E作EP⊥BC于点P,EQ⊥CD于点Q,△EPM≌△EQN,利用四边形EMCN的面积等于正方形PCQE的面积求解.【详解】过E作EP⊥BC于点P,EQ⊥CD于点Q,∵四边形ABCD是正方形,∴∠BCD=90°,又∵∠EPM=∠EQN=90°,∴∠PEQ=90°,∴∠PEM+∠MEQ=90°,∵三角形FEG是直角三角形,∴∠NEF=∠NEQ+∠MEQ=90°,∴∠PEM=∠NEQ,∵AC是∠BCD的角平分线,∠EPC=∠EQC=90°,∴EP=EQ,四边形PCQE是正方形,在△EPM和△EQN中,,∴△EPM≌△EQN(ASA)∴S△EQN=S△EPM,∴四边形EMCN的面积等于正方形PCQE的面积,∵正方形ABCD的边长为6,∴AC=6,∵EC=2AE,∴EC=4,∴EP=PC=4,∴正方形PCQE的面积=4×4=16,∴四边形EMCN的面积=16,故选C【点睛】此题考查正方形的性质,全等三角形的判定与性质,解题关键在于作辅助线3、C【解析】

根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.【详解】解:A、22+22≠32,根据勾股定理的逆定理不是直角三角形,故此选项错误;

B、42+62≠82,根据勾股定理的逆定理不是直角三角形,故此选项错误;

C、22+32=(2,根据勾股定理的逆定理是直角三角形,故此选项正确;

D、()2+()2≠()2,根据勾股定理的逆定理不是直角三角形,故此选项错误.

故选:C.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.4、C【解析】

解:∵AB被截成三等分,∴△AEH∽△AFG∽△ABC,∴,∴S△AFG:S△ABC=4:9S△AEH:S△ABC=1:9∴S阴影部分的面积=S△ABC﹣S△ABC=S△ABC故选C.5、A【解析】

根据最简二次根式的定义判断即可.【详解】A.是最简二次根式;B.2,不是最简二次根式;C.,不是最简二次根式;D.,不是最简二次根式.故选A.【点睛】本题考查了最简二次根式,熟练掌握最简二次根式的定义是解答本题的关键.6、B【解析】

先求出二次函数图象的对称轴,然后利用二次函数图象的对称性求出图象与x轴的另一个交点坐标,最后根据二次函数与x轴的交点的横坐标与一元二次方程的根的关系即可得出结论.【详解】解:二次函数图象的对称轴为直线x=∵图象与轴的一个交点为,∴图象与x轴的另一个交点坐标为(2,0)∴关于的一元二次方程的两实数根是,故选B【点睛】此题考查的是求二次函数图象与x轴的交点坐标和求一元二次方程的根,掌握二次函数图象的对称性和二次函数与x轴的交点的横坐标与一元二次方程的根的关系是解决此题的关键.7、D【解析】

根据题中所给信息,求出∠BCA=90°,再求出∠CBA=45°,从而得到△ABC为等腰直角三角形,然后根据解直角三角形的知识解答.【详解】根据题意,∠1=∠2=30°,∵∠ACD=60°,∴∠ACB=30°+60°=90°,∴∠CBA=75°﹣30°=45°,∴∠A=45°,∴AB=AC.∵BC=50×0.5=25,∴AC=BC=25(海里).故选D.考点:1等腰直角三角形;2方位角.8、D【解析】

分别求出不等式组中每一个不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【详解】:,由得,,由得,,故此不等式组的解集为:,在数轴上表示为:故选D.【点睛】本题考查了解一元一次不等式组以及在数轴上表示不等式组的解集,熟练掌握不等式组解集的确定方法“同大取大,同小取小,大小小大中间找,大大小小无解了”是解题的关键.在数轴上表示时要注意实心圆点与空心圆点的区别.9、C【解析】

根据二次根式的被开方数是非负数列出不等式x-1≥0,通过解该不等式即可求得x的取值范围.【详解】解:根据题意,得x-1≥0,

解得,x≥1.

故选:C.【点睛】此题考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.10、C【解析】

根据平行四边形的对角相等、邻角互补的性质即可求解.【详解】∵四边形ABCD为平行四边形∴∠A=∠C,∠A+∠D=180°,∵∠A+∠C=260°,∴∠A=∠C=130°,∴∠D=180°-∠A=50°.故选C.【点睛】本题考查了平行四边形的性质,熟练运用平行四边形的性质是解决问题的关键.二、填空题(每小题3分,共24分)11、十【解析】

根据正多边形的每个内角相等,可得正多边形的内角和,再根据多边形的内角和公式,可得答案.【详解】解:设正多边形是n边形,由题意得(n−2)×180°=144°×n.解得n=10,故答案为:十.【点睛】本题考查了多边形的内角,利用了正多边形的内角相等,多边形的内角和公式.12、x<4【解析】

观察图象,函数y=kx-3的图象位于函数y=2x+b图象的上方时对应x的取值即为不等式kx-3>2x+b的解集.【详解】由图象可得,当函数y=kx-3的图象位于函数y=2x+b图象的上方时对应x的取值为x<4,∴不等式kx-3>2x+b的解集是x<4.故答案为:x<4.【点睛】本题主要考查一次函数和一元一次不等式,解题的关键是利用数形结合思想.13、【解析】

代入点的坐标,求出a的值即可.【详解】将(a,0)代入直线方程得:2a+1=0解得,a=,故答案.【点睛】本题考查了直线方程问题,考查函数代入求值,是一道常规题.14、1【解析】

找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.【详解】解:∵1,1,3,x,0,3,1的众数是3,∴x=3,先对这组数据按从小到大的顺序重新排序0,1,1,1,3,3,3,位于最中间的数是1,∴这组数的中位数是1.故答案为:1;【点睛】本题考查了等腰直角三角形,勾股定理的逆定理,熟练掌握勾股定理的逆定理是解题的关键.15、3【解析】

延长BD交AC于H,证明△ADB≌△ADH,根据全等三角形的性质得到AH=AB=10,BD=DH,根据三角形的中位线定理即可求解.【详解】延长BD交AC于H,∵AD平分∠BAC,BD⊥AD,∴∠BAD=∠HAD,∠ADB=∠ADH=90°,又AD=AD,∴△ADB≌△ADH,∴AH=AB=10,D为BH中点,∴CH=AC-AH=6,∵E为BC中点,故DE是△BCH的中位线,∴DE=12CH=3故填:3.【点睛】此题主要考查三角形中位线的判定与性质,解题的关键是根据题意作出辅助线证明三角形全等进行求解.16、1.031×1【解析】

科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将10310000科学记数法表示为:1.031×1.故答案为:1.031×1.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.17、1【解析】

根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,然后求解即可.【详解】设这个多边形是n边形,根据题意得,(n-2)•180°=5×360°,解得n=1.故答案为:1.【点睛】本题考查了多边形的内角和公式与外角和定理,多边形的外角和与边数无关,任何多边形的外角和都是360°.18、1【解析】根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解答:解:如图,矩形ABCD的对角线交于点F,连接EF,AE,则有AF=FC=EF=FD=BF.∵∠ADB=30°,∴∠CFD=∠EFD=∠AFB=60°,△AFE,△AFB都是等边三角形,有AE=AF=AB=1.三、解答题(共66分)19、(1)见解析,(﹣3,﹣1);(1)见解析,(﹣3,﹣1)【解析】

(1)利用点平移的坐标变换规律写出点A1、B1、C1的坐标,然后描点即可;(1)根据关于原点对称的点的坐标特征写点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1.【详解】解:(1)如图,△A1B1C1为所作,点C1的坐标为(﹣1,1);(1)如图,△A1B1C1为所作,点C1的坐标为(﹣3,﹣1).【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.20、(1)△ACD是等腰三角形,SΔACD=2;(2)A①DE=BF,DE⊥BF,见解析;②DE=BF,DE⊥【解析】

(1)过点A作AE⊥CD于点E,则∠AEC=∠AED=90°.可证四边形ABCE是矩形,从而AE=BC=2,AB=CE=1,可得AE垂直平分CD,从而△ACD是等腰三角形;再根据三角形的面积公式计算即可;(2)A.①根据“SAS”可证△BCF≌△DCE,从而DE=BF,∠CBF=∠CDE,延长DE交BF于点H,由∠DEC+∠CDE=90°,可证∠BEH+∠CBF=90°,所以∠BHE=90°,即DE⊥BF;②证明方法同①;B.①延长MC交DF于点N,延长CM至点G,使CM=MG,连接EG,根据“SAS”证明△MEG≌△MBC,从而BC=GE,BC∥GE,然后再证明△ECG≌△CFD,可得CG=DF,∠ECG=∠CFD,进而可证明结论成立;②作FH⊥DC,交DC的延长线与点H,设FH=x,CH=y.由勾股定理列方程组求出x与y的值,根据含30°角的直角三角形的性质可知∠FCH=30°,进而可求α=60°或300°.【详解】△ACD是等腰三角形,理由如下:过点A作AE⊥CD于点E,则∠AEC=∠AED=90°.又∵∠ABC=90°,∠BCE=90°,∴四边形ABCE是矩形,∴AE=BC=2,AB=CE=1,∴CD=1,∴AE垂直平分CD,∴AC=AD,∴△ACD是等腰三角形,∴S(2)A:①DE=BF,DE⊥BF.理由如下:由旋转可知,BC=CD=2,∠BCD=90°,∵等腰直角△CEF顶点E在CB边上,顶点F在DC的延长线上,∴CE=CF,∠BCF=∠DCE=90°.在△BCF和△DCE中,BC=DC,∠BCF=∠DCE,CF=CE,∴△BCF≌△DCE(SAS),∴DE=BF,∠CBF=∠CDE,延长DE交BF于点H,∵∠DEC+∠CDE=90°,∠DEC=∠BEH,∴∠BEH+∠CBF=90°,∴∠BHE=90°,∴DE⊥BF;②DE=BF,DE⊥BF.证明方法同①;B:①CM=12DF,CM⊥DF.延长MC交DF于点N,延长CM至点G,使CM=MG,连接EG,∵M是BE的中点,∴ME=MB.在△MEG和△MBC中,ME=MB,∠EMG=∠BMC,MG=MC,∴△MEG≌△MBC(SAS),∴CM=MG=12CG,BC=GE,BC∥GE∵BC=CD,∴EG=CD.由旋转得∠BCE=α,∵BC∥GE,∴∠CEG=180°-α,∵∠DCF=360°-∠ECF-∠BCE-∠BCD=180°-α,∴∠CEG=∠DCF,在△ECG和△CFD中,CE=CF,∠CEG=∠DCF,∠CEG=∠DCF,∴△ECG≌△CFD(SAS),∴CG=DF,∠ECG=∠CFD,∵MG=MC,∴MC=12DF∵∠ECF=90°,∴∠ECG+∠FCN=∠FCD+∠FCN=90°,∴∠CNF=90°,∴DE⊥BF;②作FH⊥DC,交DC的延长线与点H,设FH=x,CH=y.∵CM=72,∴DF=CG=7∴x2+y∴FH=12∴∠FCH=30°,∴∠FCD=120°,∴∠BCE=60°,∴α=60°或300°.【点睛】本题考查了旋转的性质,矩形的判定与性质,线段垂直平分线的判定与性质,全等三角形的判定与性质,勾股定理,含30°角的直角三角形的性质,以及分类讨论的数学思想,正确作出辅助线是解答本题的关键.21、(1)(2)12【解析】

(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用完全平方公式和平方差公式计算.【详解】(1)原式==;(2)原式=6-12+12-(20-2)=-12.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.22、(1)购买甲种树苗500株,乙种树苗300株(2)320株(3)当选购甲种树苗320株,乙种树苗480株时,总费用最低,为22080元【解析】

(1)设购买甲种树苗株,乙种树苗株,列方程组求得(2)设购买甲种树苗株,乙种树苗株,列不等式求解(3)设甲种树苗购买株,购买树苗的费用为元,列出关系式,根据函数的性质求出w的最小值.【详解】(1)设购买甲种树苗株,乙种树苗株,得解得答:购买甲种树苗500株,乙种树苗300株.(2)设购买甲种树苗株,乙种树苗株,得解得答:甲种树苗至少购买320株.(3)设甲种树苗购买株,购买树苗的费用为元,则∵∴随增大而减小所以当时,有最小值,最小=元答:当选购甲种树苗320株,乙种树苗480株时,总费用最低,为22080元.23、(1);(2);(3)或【解析】

(1)根据题意列方程组即可得到结论;(2)根据平移的性质得到平移后的函数的解析式为y=-x+2+h,得到交点的坐标为(1,4),把(1,4)代入y=-x+2+h即可得到结论;(3)由点M(a,b)(a,b为常数)在函数y1=-x+m的图象上,得到M(a,2-a),求得点M(a,b)关于y轴的对称点N(-a,2-a),于是得到y3=x+2,解不等式即可得到结论.【详解】解:(1)的图象过,∴又,;(2)将的图象向上平移后为,与函数的图象交直线于点(1,4),将(1,4)代入,得:,解得:.(3)∵点M(a,b)(a,b为常数)在函数y1=-x+m的图象上,∴M(a,2-a),∴点M(a,b)关于y轴的对称点N(-a,2-a),∵函数y3=kx+m(k≠1)的图象经过点N,,由,代入得:,当x>1时,解得:x>2,当x<1时,解得:x<1,综上所述,x的取值范围为:x>2或x<1.【点睛】本题考查了反比例函数与一次函数的交点问题,正确的理解题意,熟练掌握反比例函数与一次函数的关系是解题的关键.注意掌握数形结合的思想进行解题.24、(1)A(1,0)B(0,-4);(1)d1+d1=3;(3)当d1+d1=3时点的坐标为点p1(1,1)、p1(,);(4)在线段上存在无数个p点,a=1.【解析】

(1)对于一次函数解析式,分别令y=0求出x的值,令x=0,求出y的值,即可求出A与B的坐标,(1)求出P点坐标,即可求出d1+d1的值;.(3)根据题意确定出d1+d1的范围,设P(m,1m-4),表示出d1+d1,分类讨论m的范围,根据d1+d1=3求出m的值,即可确定出P的坐标;.(4)设P(m,1m-4),表示出d1与d1,由P在线段上求出m的范围,利用绝对值的代数意义表示出d1与d1,代入d1+ad1=4,根据存在无数个点P求出a的值即可.【详解】(1)如图所示,令y=0时,x=1,x=0时,y=-4,∴A(1,0)B(0,-4)(1)当为线段的中点时,P(,)即P(1,-1)∴d1+d1=3(3)d1+d1≥1∵P点在一次函数y=1x-4的图象上,故设点P(m,1m-4),∴d1+d1=︱xp︱+︱yp︱=︱m︱+︱1m-4︱.由题当d1+d1=3时,根据1m-4=1(m-1)可分析,当0≤m≤1时,d1+d1=m+4-1m=3,此时解得,m=1∴得点p1(1,1).当m>1时,同理,d1+d1=m+1m-4=3,解得m=,所以得点p1(,).当m<0时,d1+d1=-m+4-1m=3,解得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论