版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省静宁县第三中学2024年数学八年级下册期末达标检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列计算中,运算错误的是()A. B.C. D.(-)2=32.已知:如图在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线x0经过D点,交AB于E点,且OB∙AC=160,则点E的坐标为().A.(3,8) B.(12,) C.(4,8) D.(12,4)3.下列标志既是轴对称图形又是中心对称图形的是()A. B. C. D.4.不等式组的解集是()A.x>-2 B.x<1C.-1<x<2 D.-2<x<15.将多项式加上一个单项式后,使它能够在我们所学范围内因式分解,则此单项式不能是()A. B. C. D.6.下列各组数不能作为直角三角形三边长的是()A.3,4,5 B.,, C.0.3,0.4,0.5 D.30,40,507.“龟兔赛跑”这则寓言故事讲述的是比赛中兔子开始领先,但它因为骄傲在途中睡觉,而乌龟一直坚持爬行最终贏得比赛,下列函数图象可以体现这一故事过程的是()A. B. C. D.8.已知四边形ABCD中,AB∥CD,对角线AC与BD交于点O,下列条件中不能用作判定该四边形是平行四边形条件的是()A.AB=CD B.AC=BD C.AD∥BC D.OA=OC9.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是A.55° B.60° C.65° D.70°10.在平面直角坐标系中,点的位置所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题(每小题3分,共24分)11.已知则第个等式为____________.12.如图,在平面直角坐标系xOy中,函数y1的图象与直线y1=x+1交于点A(1,a).则:(1)k的值为______;(1)当x满足______时,y1>y1.13.若,是一元二次方程的两个根,则______.14.如图,直线a、b垂直相交于点O,曲线C关于点O成中心对称,点A的对称点是点A',AB⊥a于点B,A'D⊥b于点D.若OB=3,OD=2,则阴影部分的面积之和为______.15.2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短直角边为a,较长直角边为b,那么(a+b)2的值为_____.16.函数中,自变量的取值范围是.17.甲、乙两人进行射击测试,每人10次射击成绩的平均数均是8.5环,方差分别是:,,则射击成绩较稳定的是______(填“甲”或“乙”).18.如图,在中,,点分别是边的中点,延长到点,使,得四边形.若使四边形是正方形,则应在中再添加一个条件为__________.三、解答题(共66分)19.(10分)如图,王华在晚上由路灯走向路灯,当他走到点时,发现身后他影子的顶部刚好接触到路灯的底部,当他向前再步行到达点时,发现身前他影子的顶部刚好接触到路灯的底部,已知王华的身高是,如果两个路灯之间的距离为,且两路灯的高度相同,求路灯的高度.20.(6分)某校初二年级以班为单位进行篮球比赛,第一轮比赛是先把全年级平分成、两个大组,同一个大组的每两个班都进行一场比赛,这样第一轮、两个大组共进行了20场比赛,问该校初二年级共有几个班?21.(6分)如图,△ABC是等腰直角三角形,延长BC至E使BE=BA,过点B作BD⊥AE于点D,BD与AC交于点F,连接EF.(1)求证:BF=2AD;(2)若CE=,求AC的长.22.(8分)如图,在每个小正方形的边长都是的正方形网格中,的三个顶点都在小正方形的格点上.将绕点旋转得到(点、分别与点、对应),连接,.(1)请直接在网格中补全图形;(2)四边形的周长是________________(长度单位)(3)直接写出四边形是何种特殊的四边形.23.(8分)如图,在平面直角坐标系xoy中,矩形OABC的顶点B坐标为(12,5),点D在CB边上从点C运动到点B,以AD为边作正方形ADEF,连BE、BF,在点D运动过程中,请探究以下问题:(1)△ABF的面积是否改变,如果不变,求出该定值;如果改变,请说明理由;(2)若△BEF为等腰三角形,求此时正方形ADEF的边长;(3)设E(x,y),直接写出y关于x的函数关系式及自变量x的取值范围.24.(8分)如图,菱形ABCD中,AB=1,∠A=60°,EFGH是矩形,矩形的顶点都在菱形的边上.设AE=AH=x(0<x<1),矩形的面积为S.(1)求S关于x的函数解析式;(2)当EFGH是正方形时,求S的值.25.(10分)计算:(1)(2)()﹣()26.(10分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(0,﹣1).(1)写出A、B两点的坐标(1)经过平移,△ABC的顶点A移到了点A1,画出平移后的△A1B1C1;若△ABC内有一点P(a,b),直接写出按(1)的平移变换后得到对应点P1的坐标.(3)画出△ABC绕点C旋转180°后得到的△A1B1C1.
参考答案一、选择题(每小题3分,共30分)1、C【解析】
根据二次根式的除法法则对A进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的加减法对C进行判断;根据二次根式的性质对D进行判断.【详解】A、=,所以A选项的计算正确;B、=,所以B选项的计算正确;C、与不能合并,所以C选项的计算错误;D、(-)2=3,所以D选项的计算正确.故选:C.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.2、B【解析】
过点B作轴于点,由可求出菱形的面积,由点的坐标可求出的长,根据勾股定理求出的长,故可得出点的坐标,对角线相交于D点可求出点坐标,用待定系数法可求出双曲线的解析式,与的解析式联立,即可求出点的坐标.【详解】过点B作轴于点,,点的坐标又菱形的边长为10,在中,又点是线段的中点,点的坐标为又直线的解析式为联立方程可得:解得:或,点的坐标为故选:B.【点睛】本题主要考查反比例函数与一次函数以及菱形综合,熟练的掌握菱形面积求法是解决本题的关键.3、C【解析】A、不是轴对称图形,是中心对称图形,不符合题意;B、是轴对称图形,不是中心对称图形,不符合题意;C、是轴对称图形,也是中心对称图形,符合题意;D、是轴对称图形,不是中心对称图形,不符合题意.故选C.4、D【解析】分析:首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.详解:,解①得:x>﹣2,解②得:x<1,则不等式组的解集是:﹣2<x<1.故选D.点睛:本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.找解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.5、B【解析】
将分别与各个选项结合看看是否可以分解因式,即可得出答案.【详解】A.,此选项正确,不符合题意;B.,此选项错误,符合题意;C.,此选项正确,不符合题意;D.,此选项正确,不符合题意.故选B.【点睛】本题考查了因式分解,熟练掌握公式是解题的关键.6、B【解析】选项A,,三角形是直角三角形;选项B,,三角形不是直角三角形;选项C,,三角形是直角三角形;选项D,,三角形是直角三角形;故选B.7、B【解析】【分析】根据领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟先到达终点,即可判断.【详解】领先的兔子看着缓慢爬行的乌龟,兔子骄傲起来,睡了一觉,在图形上来看在一段时间内兔子所行路程不变,当它醒来时,发现乌龟快到了终点了,于是急忙追赶,但为时已晚,乌龟先到达了终点,说明乌龟到达终点时兔子还没到达,所以排除A、C、D,所以符合题意的是B,故选B.【点睛】本题考查了函数的图象,解答本题的关键是读懂题意及图象,弄清函数图象中横、纵轴所表示的意义及实际问题中自变量与因变量之间的关系.8、B【解析】A.AB=CD,一组对边平行且相等的四边形是平行四边形;B.AC=BD,一组对边平行,另一组对边相等的四边形不一定是平行四边形,也可能是等腰梯形;C.AD∥BC,两组对边分别平行的四边形是平行四边形;D.OA=OC,通过证明两个三角形全等,得出AB=CD,可以得出平行四边形.故选B.9、C【解析】
根据旋转的性质和三角形内角和解答即可.【详解】∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°-20°=70°,∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选C.【点睛】此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.10、B【解析】
观察题目,根据象限的特点,判断出所求的点的横纵坐标的符号;接下来,根据题目的点的坐标,判断点所在的象限.【详解】∵点的横坐标是负数,纵坐标是正数,
∴在平面直角坐标系的第二象限,
故选:B.【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).二、填空题(每小题3分,共24分)11、【解析】根据21-20=20,22-21=21,23-22=22,可得被减数、减数、差都是以2为底数的幂的形式,减数和差的指数相同,被减数的指数比减数和差的指数都多1,第n个等式是:2n−2n−1=2n−1。12、2;x<﹣2或0<x<2.【解析】
(2)将A点坐标分别代入两个解析式,可求k;(2)由两个解析式组成方程组,求出交点,通过图象可得解.【详解】(2)∵函数y2的图象与直线y2=x+2交于点A(2,a),∴a=2+2=2,∴A(2,2),∴2,∴k=2,故答案为:2;(2)∵函数y2的图象与直线y2=x+2相交,∴x+2,∴x2=2,x2=﹣2,∵y2>y2,∴x<﹣2或0<x<2,故答案为:x<﹣2或0<x<2.【点睛】本题考查了反比例函数与一次函数的交点问题,待定系数法,关键是熟练利用图象表达意义解决问题.13、3【解析】
利用根与系数的关系可得两根之和与两根之积,再整体代入通分后的式子计算即可.【详解】解:∵,是一元二次方程的两个根,∴,∴.故答案为:3.【点睛】本题考查的是一元二次方程根与系数的关系,熟练掌握基本知识是解题的关键.14、1.【解析】试题分析:∵直线a、b垂直相交于点O,曲线C关于点O成中心对称,点A的对称点是点A',AB⊥a于点B,A'D⊥b于点D,OB=3,OD=2,∴AB=2,∴阴影部分的面积之和为3×2=1.故答案为1.考点:中心对称.15、1【解析】
根据大正方形的面积即可求得c2,利用勾股定理可以得到a2+b2=c2,然后求得直角三角形的面积即可求得ab的值,根据(a+b)2=a2+b2+2ab=c2+2ab即可求解.【详解】∵大正方形的面积是13,∴c2=13,∴a2+b2=c2=13,∵直角三角形的面积是=3,又∵直角三角形的面积是ab=3,∴ab=6,∴(a+b)2=a2+b2+2ab=c2+2ab=13+2×6=13+12=1.故答案为1.【点睛】本题考查了勾股定理以及完全平方公式,正确表示出直角三角形的面积是解题的关键.16、x≠1【解析】,x≠117、甲【解析】
根据方差的性质即可求解.【详解】∵<,∴成绩较稳定的是甲【点睛】此题主要考查利用方差判断稳定性,解题的关键是熟知方差的性质.18、答案不唯一,如∠ACB=90°或∠BAC=45°或∠B=45°【解析】
先证明四边形ADCF是平行四边形,再证明AC=DF即可,再利用∠ACB=90°得出答案即可.【详解】∠ACB=90°时,四边形ADCF是正方形,理由:∵E是AC中点,∴AE=EC,∵DE=EF,∴四边形ADCF是平行四边形,∵AD=DB,AE=EC,∴DE=BC,∴DF=BC,∵CA=CB,∴AC=DF,∴四边形ADCF是矩形,点D.E分别是边AB、AC的中点,∴DE//BC,∵∠ACB=90°,∴∠AED=90°,∴矩形ADCF是正方形.故答案为∠ACB=90°.【点睛】此题考查正方形的判定,解题关键在于掌握判定法则三、解答题(共66分)19、路灯的高度是【解析】
根据题意结合图形可知,AP=OB,在P点时有,列出比例式进行即可即可【详解】解:由题意知:即解得答:路灯的高度是【点睛】本题主要考查相似三角形的应用,熟练掌握相似三角形对应边成比例是解题关键20、10个【解析】
设全年级共有2n个班级,则每一大组有n个班,每个班需参加(n-1)场比赛,则共有n(n-1)×场比赛,可以列出一个一元二次方程.【详解】解:设全年级个班,由题意得:,解得或(舍),,答:全年级一共10个班.【点睛】本题主要考查了有实际问题抽象出一元二次方程,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.21、(1)见解析;(2)2+【解析】
(1)由△ABC是等腰直角三角形,得到AC=BC,∠FCB=∠ECA=90°,由于AC⊥BE,BD⊥AE,根据垂直的定义得到∠CBF+∠CFB=90°,∠DAF+∠AFD=90°,由于∠CFB=∠AFD,于是得到∠CBF=∠CAE,证得△BCF≌△ACE,得出AE=BF,由于BE=BA,BD⊥AE,于是得到AD=ED,即AE=2AD,即可得到结论;(2)由(1)知△BCF≌△ACE,推出CF=CE=,在Rt△CEF中,EF==2,由于BD⊥AE,AD=ED,求得AF=FE=2,于是结论即可.【详解】(1)证明:∵△ABC是等腰直角三角形,∴AC=BC,∴∠FCB=∠ECA=90°,∵AC⊥BE,BD⊥AE,∴∠CBF+∠CFB=90°,∠DAF+∠AFD=90°,∵∠CFB=∠AFD,∴∠CBF=∠CAE,在△BCF与△ACE中,,∴△BCF≌△ACE,∴AE=BF,∵BE=BA,BD⊥AE,∴AD=ED,即AE=2AD,∴BF=2AD;(2)由(1)知△BCF≌△ACE,∴CF=CE=,∴在Rt△CEF中,EF==2,∵BD⊥AE,AD=ED,∴AF=FE=2,∴AC=AF+CF=2+.【点评】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理,熟练掌握全等三角形的判定和性质定理是解题的关键.22、(1)见解析;(2);(3)正方形,见解析【解析】
(1)根据中心对称的特点得到点A1、C1,顺次连线即可得到图形;(2)根据图形分别求出AC、、、的长即可得到答案;(3)求出AB、AC、BC的长度,根据勾股定理逆定理及中心对称图形得到四边形是正方形,即可求出答案.【详解】(1)如图,(2)∵,,,,∴四边形的周长=AC+++=,故答案为:;(3)由题意得:,,,∴AB=BC,,∴△ABC是等腰直角三角形,由(2)得,∴四边形是菱形,由中心对称得到,,,∴是等腰直角三角形,∴,∴,∴四边形是正方形.【点睛】此题考查中心对称图形的作图能力,勾股定理计算网格中线段长度,等腰直角三角形的判定定理及性质定理,勾股定理的逆定理,正方形的判定定理.23、(1)不变,252,理由见解析;(2)55或52或525;(3)y=-x+22(5≤【解析】
(1)由“SAS”可证△ABD≌△FHA,可得HF=AB=5,即可求△ABF的面积;(2)分三种情况讨论,由等腰三角形的性质和勾股定理可求正方形ADEF的边长;(3)由全等三角形的性质,DH=AB=5,EH=DB,可得y=EH+5=DB+5,x=12-DB+DH=17-DB,即可求y关于x的函数关系式.【详解】解:(1)作FH⊥AB交AB延长线于H,∵正方形ADEF中,AD=AF,∠DAF=90°,∴∠DAH+∠FAH=90°.∵∠H=90°,∴∠FAH+∠AFH=90°,∴∠DAH=∠AFH,∵矩形OABC中,AB=5,∠ABD=90°,∴∠ABD=∠H∴△ABD≌△FHA,∴FH=AB=5,∴S△AEF(2)①当EB=EF时,作EG⊥CB∵正方形ADEF中,ED=EF,∴ED=EB,∴DB=2DG,同(1)理得△ABD≌△GDE,∴DG=AB=5,∴DB=10,∴AD=B②当EB=BF时,∠BEF=∠BFE,∵正方形ADEF中,ED=AF,∠DEF=∠AFE=90°,∴∠BED=∠BFA,∴△ABF≌△DBE,∴BD=AB=5,∵矩形OABC中,∠ABD=90°,∴AD=B③当FB=FE时,作FQ⊥AB,同理得BQ=AQ=52,BD=AQ=5∴AD=B(3)当5≤x≤12时,如图,
由(2)可知DH=AB=5,EH=DB,且E(x,y),∴y=EH+5=DB+5,x=12-DB+DH=17-DB,∴y=22-x,当12<x≤17时,如图,
同理可得:x=12-DB+5=17-DB,y=DB+5,∴y=22-x,综上所述:当5≤x≤17时,y=22-xy=-x+22(5≤x≤17).【点睛】本题是四边形综合题,考查了正方形的性质,矩形的性质,全等三角形的判定和性质,勾股定理,等腰三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.24、(1)矩形EFGH的面积为S=-x2+x(0<x<1);(2)S=.【解析】
(1)连接BD交EF于点M,根据菱形的性质得出AB=AD,BD⊥EF,求出△AEH是等边三角形,根据等边三角形的性质得出∠AEH=∠ABD=60°,∠BEM=30°,BE=2BM,求出EM=BE,即可求出答案;(2)根据
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度跨界合作与联合营销合同2篇
- 2024年度企业间货物买卖合同(含质保期)3篇
- 2024年度租赁合同协议范本3篇
- 二零二四年度工程装潢与居间合同2篇
- 2024年二手房交易双方互不支付佣金合同2篇
- 2024年度工厂租赁合同协议2篇
- 高级项目管理顾问2024年度服务协议3篇
- 化工热力学:第6章 热力学第一定律及其工程应用
- 2024年度临时安保劳务合同2篇
- 谈话课件教学课件
- 乒乓球女单世界第一首位零零后孙颖莎介绍课件
- 创新实践(理论)学习通超星期末考试答案章节答案2024年
- 2024实施就业优先战略促进高质量充分就业的意见(就业是最基本的民生)
- 英语我的家乡甘肃酒泉课件
- 部编版2024-2025学年六年级上册语文第19课《只有一个地球》同步练习(附答案解析)
- 青岛版科学三年级上册全册课件教材
- 语文园地四 教学设计2024~2025学年一年级语文上册统编版
- 2024汽车行业社媒营销趋势-微播易CAA中国广告协会-2024.08-98正式版
- 出境劳务派遣合同模板
- 湖北省2024年中考英语模拟试卷(含答案)
- Project项目管理(从菜鸟到实战高手)
评论
0/150
提交评论