2024届哈尔滨松北区七校联考八年级数学第二学期期末学业水平测试模拟试题含解析_第1页
2024届哈尔滨松北区七校联考八年级数学第二学期期末学业水平测试模拟试题含解析_第2页
2024届哈尔滨松北区七校联考八年级数学第二学期期末学业水平测试模拟试题含解析_第3页
2024届哈尔滨松北区七校联考八年级数学第二学期期末学业水平测试模拟试题含解析_第4页
2024届哈尔滨松北区七校联考八年级数学第二学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届哈尔滨松北区七校联考八年级数学第二学期期末学业水平测试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.已知,则的值为()A. B.-2 C. D.22.已知实数a,b,若a>b,则下列结论错误的是A.a-7>b-7 B.6+a>b+6 C. D.-3a>-3b3.如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB的长为()A. B.2 C. D.24.如图所示,矩形ABCD中,点E在DC上且DE:EC=2:3,连接BE交对角线AC于点O.延长AD交BE的延长线于点F,则△AOF与△BOC的面积之比为()A.9:4 B.3:2 C.25:9 D.16:95.如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是()A.18 B.28 C.36 D.466.如图,在Rt△ABC中,∠C=90°,BC=4,AB=6,点D是边BC上的动点,以AB为对角线的所有▱ADBE中,DE的最小值为()A.2 B.4 C.6 D.27.在长度为1的线段上找到两个黄金分割点P,Q,则PQ=()A. B. C. D.8.在一张由复印机复印出来的纸上,一个多边形图案的一条边由原来的1cm变成2cm,那么这次复印出来的多边形图案面积是原来的()A.1倍 B.2倍C.3倍 D.4倍9.下列多项式中,能用公式法分解因式的是()A. B. C. D.10.下列四组线段中,可以构成直角三角形的是()A.4,5,6 B.1.5,2,2.5 C.2,3,4 D.1,,311.某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的这三项成绩(百分制)分别为95分,90分,88分,则小彤这学期的体育成绩为()A.89分 B.90分 C.92分 D.93分12.如图,菱形中,,与交于,为延长线上的一点,且,连结分别交,于点,,连结则下列结论:①;②与全等的三角形共有个;③;④由点,,,构成的四边形是菱形.其中正确的是()A.①④ B.①③④ C.①②③ D.②③④二、填空题(每题4分,共24分)13.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为_____.

14.平行四边形ABCD中,若,=_____.15.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=.其中正确的序号是(把你认为正确的都填上).16.如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD=_____.17.在△ABC中,AB=10,CA=8,BC=6,∠BAC的平分线与∠BCA的平分线交于点I,且DI∥BC交AB于点D,则DI的长为____.18.有一个一元二次方程,它的一个根x1=1,另一个根-2<x2<1.请你写出一个符合这样条件的方程:_________.三、解答题(共78分)19.(8分)计算:+20.(8分)如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF//AB交AC于F(1)求证:AE=DF,(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.21.(8分)(1)计算:(2)解方程:-1=22.(10分)如图,在平面直角坐标系中,正方形OABC的边长为a.直线y=bx+c交x轴于E,交y轴于F,且a、b、c分别满足﹣(a﹣4)2≥0,c=+8.(1)求直线y=bx+c的解析式并直接写出正方形OABC的对角线的交点D的坐标;(2)直线y=bx+c沿x轴正方向以每秒移动1个单位长度的速度平移,设平移的时间为t秒,问是否存在t的值,使直线EF平分正方形OABC的面积?若存在,请求出t的值;若不存在,请说明理由;(3)点P为正方形OABC的对角线AC上的动点(端点A、C除外),PM⊥PO,交直线AB于M,求的值.23.(10分)某班开展勤俭节约的活动,对每个同学的一天的消费情况进行调查,得到统计图如图所示:(1)求该班的总人数;(2)将条形图补充完整,并写出消费金额的中位数;(3)该班这一天平均每人消费多少元?24.(10分)《北京中小学语文学科教学21条改进意见》中的第三条指出:“在教学中重视对国学经典文化的学习,重视历史文化的熏陶,加强与革命传统教育的结合,使学生了解中华文化的悠久历史,增强民族文化自信和价值观自信,使语文教学成为涵养社会主义核心价值观的重要源泉之一”.为此,昌平区掀起了以“阅读经典作品,提升思维品质”为主题的读书活动热潮,在一个月的活动中随机调查了某校初二年级学生的周人均阅读时间的情况,整理并绘制了如下的统计图表:某校初二年级学生周人均阅读时间频数分布表周人均阅读时间x(小时)频数频率0≤x<2100.0252≤x<4600.1504≤x<6a0.2006≤x<81100.2758≤x<101000.25010≤x<1240b合计4001.000请根据以上信息,解答下列问题:(1)在频数分布表中a=______,b=______;(2)补全频数分布直方图;(3)若该校有1600名学生,根据调查数据请你估计,该校学生周人均阅读时间不少于6小时的学生大约有______人.25.(12分)某风景区计划在绿化区域种植银杏树,现甲、乙两家有相同的银杏树苗可供选择,其具体销售方案如下:甲乙购树苗数量销售单价购树苗数量销售单价不超过500棵时800元/棵不超过1000棵时800元/棵超过500棵的部分700元/棵超过1000棵的部分600元/棵设购买银杏树苗x棵,到两家购买所需费用分别为y甲元、y乙元(1)该风景区需要购买800棵银杏树苗,若都在甲家购买所要费用为元,若都在乙家购买所需费用为元;(2)当x>1000时,分别求出y甲、y乙与x之间的函数关系式;(3)如果你是该风景区的负责人,购买树苗时有什么方案,为什么?26.在菱形ABCD中,∠ABC=60°,P是射线BD上一动点,以AP为边向右侧作等边△APE,连接CE.(1)如图1,当点P在菱形ABCD内部时,则BP与CE的数量关系是,CE与AD的位置关系是.(2)如图2,当点P在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由;(3)如图2,连接BE,若AB=2,BE=2,求AP的长.

参考答案一、选择题(每题4分,共48分)1、C【解析】

首先根据x的范围确定x−3与x−2的符号,然后即可化简二次根式,然后合并同类项即可.【详解】∵,∴x−3<0,x−2<0,∴=3−x+(2−x)=5−2x.故选:C.【点睛】本题主要考查了二次根式的化简,化简时要注意二次根式的性质:=|a|.2、D【解析】A.∵a>b,∴a-7>b-7,∴选项A正确;B.∵a>b,∴6+a>b+6,∴选项B正确;C.∵a>b,∴,∴选项C正确;D.∵a>b,∴-3a<-3b,∴选项D错误.故选D.3、C【解析】

在Rt△ACD中求出AD,在Rt△CDB中求出BD,继而可得出AB.【详解】在Rt△ACD中,∠A=45°,CD=1,则AD=CD=1,在Rt△CDB中,∠B=30°,CD=1,则BD=,故AB=AD+BD=+1.故选C.【点睛】本题考查了等腰直角三角形及含30°角的直角三角形的性质,要求我们熟练掌握这两种特殊直角三角形的性质.4、C【解析】

由矩形的性质可知:AB=CD,AB∥CD,进而可证明△AOB∽△COE,结合已知条件可得AO:OC=3:5,再根据相似三角形的性质:面积之比等于相似比的平方即可求出△AOF与△BOC的面积之比.【详解】解:∵四边形ABCD是矩形,∴AB=CD,AB∥CD,∴△AOB∽△COE,∵DE:EC=2:3,∴CE:CD=3:5,∴CE:CD=CE:AB=CO:AO=3:5,∴S△AOF:S△BOC=25:1.故选C.【点睛】本题考查了矩形的性质、相似三角形的判定和性质,熟记两个三角形相似面积之比等于相似比的平方是解题的关键.5、C【解析】

∵四边形ABCD是平行四边形,∴AB=CD=5.∵△OCD的周长为23,∴OD+OC=23﹣5=18.∵BD=2DO,AC=2OC,∴平行四边形ABCD的两条对角线的和=BD+AC=2(DO+OC)=36.故选C.6、D【解析】

由条件可知BD∥AE,则可知当DE⊥BC时,DE有最小值,可证得四边ACDE为矩形,可求得答案.【详解】∵四边形ADBE为平行四边形,∴AE∥BC,∴当DE⊥BC时,DE有最小值,如图,∵∠ACB=90°,∴四边形ACDE为矩形,∴DE=AC,在Rt△ABC中,由勾股定理可求得AC==2,∴DE的最小值为2,故选:D.【点睛】本题主要考查平行四边形的性质和矩形的判定和性质,确定出DE取最小值时的位置是解题的关键.7、C【解析】【分析】先根据黄金分割的定义得出较长的线段AP=BQ=AB,再根据PQ=AP+BQ-AB,即可得出结果.【详解】:根据黄金分割点的概念,可知AP=BQ=,则PQ=AP+BQ-AB=故选:C【点睛】此题主要是考查了黄金分割的概念:把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值()叫做黄金比.熟记黄金分割分成的两条线段和原线段之间的关系,能够熟练求解.8、D【解析】

复印前后的多边形按照比例放大与缩小,因此它们是相似多边形,本题按照相似多边形的性质求解.【详解】由题意可知,相似多边形的边长之比=相似比=1:2,所以面积之比=(1:2)2=1:4.故选D.【点睛】此题考查相似多边形的性质,解题关键在于掌握其性质.9、D【解析】

利用平方差公式及完全平方公式的结构特征判断即可.【详解】解:=(n+m)(n−m),故选D.【点睛】此题考查了因式分解−运用公式法,熟练掌握平方差公式及完全平方公式是解本题的关键.10、B【解析】试题分析:由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可:A、42+52=41≠62,不可以构成直角三角形,故本选项错误;B、1.52+22=6.25=2.52,可以构成直角三角形,故本选项正确;C、22+32=13≠42,不可以构成直角三角形,故本选项错误;D、,不可以构成直角三角形,故本选项错误.故选B.考点:勾股定理的逆定理.11、B【解析】

根据加权平均数的计算公式列出算式,再进行计算即可.【详解】】解:根据题意得:

95×20%+90×30%+88×50%=90(分).

即小彤这学期的体育成绩为90分.

故选:B.【点睛】本题考查加权平均数,掌握加权平均数的计算公式是题的关键,是一道常考题.12、A【解析】

连结,可说明四边形是平行四边形,即是的中点;由有题意的可得O是BD的中点,即可判定①;运用菱形和平行四边形的性质寻找判定全等三角形的条件,找出与其全等的三角形即可判定②;证出OG是△ABD的中位线,得出OG//AB,OG=AB,得出△GOD∽△ABD,△ABF∽△OGF,由相似三角形的性质和面积关系得出S四边形0DGF=S△ABF.即可判定③;先说明△ABD是等边三角形,则BD=AB,即可判定④.【详解】解:如图:连结.,,四边形是平行四边形,是的中点,∵O是BD的中点,①正确;有,,,,,,共个,②错误;∵OB=OD,AG=DG,∴OG是△ABD的中位线,∴OG//AB,OG=AB,∴△GOD∽△ABD,△ABF∽△OGF,∵△GOD的面积=△ABD的面积,△ABF的面积=△OGF的面积的4倍,AF:OF=2:1,∴△AFG的面积=△OGF的面积的2倍,又∵△GOD的面积=△A0G的面积=△B0G的面积,.∴;不正确;③错误;是等边三角形.,是菱形,④正确.故答案为A.【点睛】本题考查了菱形的判定与性质、全等三角形的判定与性质、等边三角形的判定与性质、三角形中位线定理、相似三角形的判定与性质等知识;考查知识点较多、难道较大,解题的关键在于对所学知识的灵活应用.二、填空题(每题4分,共24分)13、(-2,-2)【解析】

先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“卒”的坐标.【详解】“卒”的坐标为(﹣2,﹣2),故答案是:(﹣2,﹣2).【点睛】考查了坐标确定位置,关键是正确确定原点位置.14、120°【解析】

根据平行四边形对角相等求解.【详解】平行四边形ABCD中,∠A=∠C,又,∴∠A=120°,故填:120°.【点睛】此题主要考查平行四边形的性质,解题的关键是熟知平行四边形对角相等.15、①②④【解析】分析:∵四边形ABCD是正方形,∴AB=AD。∵△AEF是等边三角形,∴AE=AF。∵在Rt△ABE和Rt△ADF中,AB=AD,AE=AF,∴Rt△ABE≌Rt△ADF(HL)。∴BE=DF。∵BC=DC,∴BC﹣BE=CD﹣DF。∴CE=CF。∴①说法正确。∵CE=CF,∴△ECF是等腰直角三角形。∴∠CEF=45°。∵∠AEF=60°,∴∠AEB=75°。∴②说法正确。如图,连接AC,交EF于G点,∴AC⊥EF,且AC平分EF。∵∠CAD≠∠DAF,∴DF≠FG。∴BE+DF≠EF。∴③说法错误。∵EF=2,∴CE=CF=。设正方形的边长为a,在Rt△ADF中,,解得,∴。∴。∴④说法正确。综上所述,正确的序号是①②④。16、1【解析】

根据直角三角形斜边上的中线等于斜边的一半解答.【详解】∵∠ACB=90°,D为AB的中点,∴CD=AB=×6=1.故答案为1.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.17、2.5【解析】

根据题意,△ABC是直角三角形,延长DI交AC于点E,过I作IF⊥AB,IG⊥BC,由点I是内心,则,利用等面积的方法求得,然后利用平行线分线段成比例,得,又由BD=DI,把数据代入计算,即可得到DI的长度.【详解】解:如图,延长DI交AC于点E,过I作IF⊥AB,IG⊥BC,在△ABC中,AB=10,CA=8,BC=6,∴,∴△ABC是直角三角形,即AC⊥BC,∵DI∥BC,∴DE⊥AC,∵∠BAC的平分线与∠BCA的平分线交于点I,∴点I是三角形的内心,则,在△ABC中,根据等面积的方法,有,设即,解得:,∵DI∥BC,∴,∠DIB=∠CBI=∠DBI,∴DI=BD,∴,解得:BD=2.5,∴DI=2.5;故答案为:2.5.【点睛】本题考查了三角形的角平分线性质,平行线分线段成比例,以及等面积法计算高,解题的关键是利用等面积法求得内心到各边的距离,以及掌握平行线分线段成比例的性质.18、(答案不唯一).【解析】

可选择x2=-1,则两根之和与两根之积可求,再设一元二次方程的二次项系数为1,那么可得所求方程.【详解】解:∵方程的另一个根-2<x2<1,∴可设另一个根为x2=-1,∵一个根x1=1,∴两根之和为1,两根之积为-1,设一元二次方程的二次项系数为1,此时方程应为.【点睛】本题考查的是已知两数,构造以此两数为根的一元二次方程,这属于一元二次方程根与系数关系的知识,对于此类问题:知道方程的一个根和另一个根的范围,可设出另一个根的具体值,进一步求出两根之和与两根之积,再设一元二次方程的二次项系数为1,那么所求的一元二次方程即为.三、解答题(共78分)19、3+1.【解析】

先利用平方根的性质,然后化简后合并即可.【详解】解:原式=3+1=3+1.【点睛】此题考查二次根式的混合运算,解题关键在于掌握把二次根式化为最简二次根式.20、(1)详见解析;(2)平行四边形AEDF为菱形;理由详见解析【解析】试题分析:(1)利用AAS推出△ADE≌△DAF,再根据全等三角形的对应边相等得出AE=DF;(2)先根据已知中的两组平行线,可证四边形DEFA是▱,再利用AD是角平分线,结合AE∥DF,易证∠DAF=∠FDA,利用等角对等边,可得AE=DF,从而可证▱AEDF实菱形.试题解析:(1)∵DE∥AC,∠ADE=∠DAF,同理∠DAE=∠FDA,∵AD=DA,∴△ADE≌△DAF,∴AE=DF;(2)若AD平分∠BAC,四边形AEDF是菱形,∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∴∠DAF=∠FDA.∴AF=DF.∴平行四边形AEDF为菱形.考点:1.全等三角形的判定与性质;2.菱形的判定.21、(1)3+2;(2)原方程无解【解析】

(1)利用乘法公式展开,然后合并即可;(2)先去分母把方程化为(x-2)2-(x+2)(x-2)=16,然后解整式方程后进行检验确定原方程的解.【详解】解:(1)原式=5+5-3-2=3+2;(2)去分母得(x-2)2-(x+2)(x-2)=16,解得x=-2,检验:当x=-2时,(x+2)(x-2)=0,则x=-2为原方程的增根,所以原方程无解.【点睛】本题考查了二次根式的混合运算及分式方程的解法:先进行二次根式的乘法运算,再合并同类二次根式即可.解分式方程最关键的是把分式方程化为整式方程.22、(1)y=2x+8,D(2,2);(2)存在,5;(3).【解析】

试题分析:(1)利用非负数的性质求出a,b,c的值,进而确定出直线y=bx+c,得到正方形的边长,即可确定出D坐标;(2)存在,理由为:对于直线y=2x+8,令y=0求出x的值,确定出E坐标,根据题意得:当直线EF平移到过D点时正好平分正方形AOBC的面积,设平移后的直线方程为y=2x+t,将D坐标代入求出b的值,确定出平移后直线解析式,进而确定出此直线与x轴的交点,从而求出平移距离,得到t的值;(3)过P点作PQ∥OA,PH∥CO,交CO、AB于N、Q,交CB、OA于G、H,利用同角的余角相等得到一对角相等,再由一对直角相等,利用角平分线定理得到PH=PQ,利用AAS得到三角形OPH与三角形MPQ全等,得到OH=QM,根据四边形CNPG为正方形,得到PG=BQ=CN,由三角形CGP为等腰直角三角形得到CP=GP=BM,即可求出所求式子的值.试题解析:(1)∵-(a-4)2≥0,,∴a=4,b=2,c=8,∴直线y=bx+c的解析式为:y=2x+8,∵正方形OABC的对角线的交点D,且正方形边长为4,∴D(2,2);(2)存在,理由为:对于直线y=2x+8,当y=0时,x=-4,∴E点的坐标为(-4,0),根据题意得:当直线EF平移到过D点时正好平分正方形AOBC的面积,设平移后的直线为y=2x+t,代入D点坐标(2,2),得:2=4+t,即t=-2,∴平移后的直线方程为y=2x-2,令y=0,得到x=1,∴此时直线和x轴的交点坐标为(1,0),平移的距离为1-(-4)=5,则t=5秒;(3)过P点作PQ∥OA,PH∥CO,交CO、AB于N、Q,交CB、OA于G、H,∵∠OPM=∠HPQ=90°,∴∠OPH+∠HPM=90°,∠HPM+∠MPQ=90°,∴∠OPH=∠MPQ,∵AC为∠BAO平分线,且PH⊥OA,PQ⊥AB,∴PH=PQ,在△OPH和△MPQ中,,∴△OPH≌△MPQ(AAS),∴OH=QM,∵四边形CNPG为正方形,∴PG=BQ=CN,∴CP=PG=BM,即.考点:一次函数综合题.【详解】请在此输入详解!23、(1)50;(2)图详见解析,12.5;(3)该班这一天平均每人消费13.1元.【解析】

(1)根据C类有14人,占28%,即可求得该班的总人数;(2)根据(1)中的答案可以求得消费10元的人数,从而可以将条形统计图补充完整,进而求得消费金额的中位数;(3)根据加权平均数的计算方法可以求得该班这一天平均每人消费的金额.【详解】(1)由题意可得,该班的总人数为:14÷28%=50,即该班的总人数是50;(2)消费10元的有:50-9-14-7-4=16(人),补充完整的统计图如图所示,消费金额的中位数是:=12.5;(3)由题意可得,该班这一天平均每人消费:=13.1(元),即该班这一天平均每人消费13.1元.【点睛】本题考查条形统计图、扇形统计图、中位数、加权平均数,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.24、(1)80,0.100;(2)见解析;(3)1.【解析】

(1)总人数乘以0.2,即可得到a,40除以总人数,即可得到b;(2)根据(1)中的计算结果和表中信息,补全频数分布直方图,即可;(3)学校总人数×周人均阅读时间不少于6小时的学生的百分比,即可求解.【详解】(1)a=400×0.200=80,b=40÷400=0.100;故答案为:80,0.100;(2)补全频数分布直方图,如图所示:(3)1600×=1(人),答:该校学生周人均阅读时间不少于6小时的学生大约有1人,故答案为:1.【点睛】本题主要考查频数分布直方图、频数分布表,掌握频数分布直方图、频数分布表的特征,把它们的数据结合起来,是解题的关键.25、(1)610000;1;(2)当x>1000时,y甲=700x+50000,y乙=600x+200000,x为正整数;(3)当0≤x≤500时或x=1500时,到两家购买所需费用一样;当500<x<1500时,到甲家购买合算;当x>1500时,到乙家购买合算.【解析】

(1)、(2)依据表格提供的数据,然后结合公式总价单价数量进行计算即可;(3)分为,,三种情况进行讨论即可.【详解】解:(1)甲家购买所要费用;都在乙家购买所需费用.故答案为:610000;1.(2)当时,,,为正整数,(3)当时,到两家购买所需费用一样;当时,甲家有优惠而乙家无优惠,所以到甲家购买合算;又.当时,,解得,当时,到两家购买所需费用一样;当时,,解得,当时,到甲家购买合算;当时,,解得,当时,到乙家购买合算.综上所述,当时或时,到两家购买所需费用一样;当时,到甲家购买合算;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论