江苏省常州市新北区2024年八年级下册数学期末综合测试模拟试题含解析_第1页
江苏省常州市新北区2024年八年级下册数学期末综合测试模拟试题含解析_第2页
江苏省常州市新北区2024年八年级下册数学期末综合测试模拟试题含解析_第3页
江苏省常州市新北区2024年八年级下册数学期末综合测试模拟试题含解析_第4页
江苏省常州市新北区2024年八年级下册数学期末综合测试模拟试题含解析_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省常州市新北区2024年八年级下册数学期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列分式中,是最简分式的是()A. B. C. D.2.某班名学生的身高情况如下表:身高(m)人数关于身高的统计量中,不随、的变化而变化的有()A.众数,中位数 B.中位数,方差 C.平均数,方差 D.平均数,众数3.下列式子属于最简二次根式的是()A. B. C.(a>0) D.4.如图所示,两个含有30°角的完全相同的三角板ABC和DEF沿直线l滑动,下列说法错误的是()A.四边形ACDF是平行四边形B.当点E为BC中点时,四边形ACDF是矩形C.当点B与点E重合时,四边形ACDF是菱形D.四边形ACDF不可能是正方形5.某同学粗心大意,因式分解时,把等式x4-■=(x2+4)(x+2)(x-▲)中的两个数字弄污了,则式子中“■”和“▲”对应的一组数字可能是()A.8和1 B.16和2C.24和3 D.64和86.如图,已知正方形ABCD的面积等于25,直线a,b,c分别过A,B,C三点,且a∥b∥c,EF⊥直线c,垂足为点F交直线a于点E,若直线a,b之间的距离为3,则EF=()A.1 B.2 C.-3 D.5-7.如图,在中,,,,延长到点,使,交于点,在上取一点,使,连接.有以下结论:①平分;②;③是等边三角形;④,则正确的结论有()A.1个 B.2个 C.3个 D.4个8.从2004年5月起某次列车平均提速20千米/小时,用相同的时间,列车提速前行驶200千米,提速后比提速前多行驶50千米,提速前列车的平均速度是多少?设提速前这次列车的平均速度为千米/小时,则下列列式中正确的是()A. B. C. D.9.一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示.则8min时容器内的水量为()A.20L B.25L C.27L D.30L10.△ABC三边长分别为a、b、c,则下列条件不能判断△ABC是直角三角形的是()A.a=3,b=4,c=5 B.a=4,b=5,c=6C.a=6,b=8,c=10 D.a=5,b=12,c=1311.下列二次根式中,不是最简二次根式的是()A. B. C. D.12.方程=1的解的情况为()A.x=﹣ B.x=﹣3 C.x=1 D.原分式方程无解二、填空题(每题4分,共24分)13.已知一组数据1,a,3,6,7,它的平均数是4,这组数据的方差是_____.14.如图,在△ABC中,AD⊥DE,BE⊥DE,AC、BC分别平分∠BAD和∠ABE.点C在线段DE上.若AD=5,BE=2,则AB的长是_____.15.如图,正方形ABCD的边长为2,点E、F分别是CD、BC的中点,AE与DF交于点P,连接CP,则CP=_____.16.如图,在平面直角坐标系xOy中,直线l1,l2分别是函数y=k1x+b1和y=k2x+b2的图象,则可以估计关于x的不等式k1x+b1>k2x+b2的解集为_____.17.写一个二次项系数为1的一元二次方程,使得两根分别是﹣2和1._____.18.命题“对顶角相等”的逆命题的题设是___________.三、解答题(共78分)19.(8分)武汉某文化旅游公司为了在军运会期间更好地宣传武汉,在工厂定制了一批具有浓郁的武汉特色的商品.为了了解市场情况,该公司向市场投放,型商品共件进行试销,型商品成本价元/件,商品成本价元/件,其中型商品的件数不大于型的件数,且不小于件,已知型商品的售价为元/件,型商品的售价为元/件,且全部售出.设投放型商品件,该公司销售这批商品的利润元.(1)直接写出与之间的函数关系式:_______;(2)为了使这批商品的利润最大,该公司应该向市场投放多少件型商品?最大利润是多少?(3)该公司决定在试销活动中每售出一件型商品,就从一件型商品的利润中捐献慈善资金元,当该公司售完这件商品并捐献资金后获得的最大收益为元时,求的值.20.(8分)已知一次函数的图象与正比例函数的图象的交点的纵坐标是4.且与轴的交点的横坐标是(1)求这个一次函数的解析式;(2)直接写出时的取值范围.21.(8分)如图1,以□ABCD的较短边CD为一边作菱形CDEF,使点F落在边AD上,连接BE,交AF于点G.(1)猜想BG与EG的数量关系.并说明理由;(2)延长DE,BA交于点H,其他条件不变,①如图2,若∠ADC=60°,求的值;②如图3,若∠ADC=α(0°<α<90°),直接写出的值.(用含α的三角函数表示)22.(10分)如图1,已知四边形ABCD是正方形,对角线AC、BD相交于点E,以点E为顶点作正方形EFGH.(1)如图1,点A、D分别在EH和EF上,连接BH、AF,直接写出BH和AF的数量关系;(2)将正方形EFGH绕点E顺时针方向旋转.①如图2,判断BH和AF的数量关系,并说明理由;②如果四边形ABDH是平行四边形,请在备用图中补全图形;如果四方形ABCD的边长为,求正方形EFGH的边长.23.(10分)在中,,以斜边为底边向外作等腰,连接.(1)如图1,若.①求证:分;②若,求的长.(2)如图2,若,求的长.24.(10分)某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为~的产品为合格〉.随机各抽取了20个祥品迸行检测.过程如下:收集数据(单位:):甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180.乙车间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183.整理数据:组别频数165.5~170.5170.5~175.5175.5~180.5180.5~185.5185.5~190.5190.5~195.5甲车间245621乙车间1220分析数据:车间平均数众数中位数方差甲车1乙车6应用数据;(1)计算甲车间样品的合格率.(2)估计乙车间生产的1000个该款新产品中合格产品有多少个?(3)结合上述数据信息.请判断哪个车间生产的新产品更好.并说明理由.25.(12分)某校为了解“阳光体育”活动的开展情况,从全校2000名学生中,随机抽取部分学生进行问卷调查(每名学生只能填写一项自己喜欢的活动项目),并将调查结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)被调查的学生共有人,并补全条形统计图;(2)在扇形统计图中,m=,n=,表示区域C的圆心角为度;(3)全校学生中喜欢篮球的人数大约有多少?26.阅读下列材料:在学习“可化为一元一次方程的分式方程及其解法”的过程中,老师提出一个问题:若关于x的分式方程ax-a=1的解为正数,求a经过独立思考与分析后,小杰和小哲开始交流解题思路如下:小杰说:解这个关于x的分式方程,得x=a+1.由题意可得a+1>0,所以a>﹣1,问题解决.小哲说:你考虑的不全面,还必须保证x≠1,即a+1≠1才行.(1)请回答:的说法是正确的,并简述正确的理由是;(2)参考对上述问题的讨论,解决下面的问题:若关于x的方程mx-3-x

参考答案一、选择题(每题4分,共48分)1、C【解析】

根据最简分式的定义对四个分式分别进行判断即可.【详解】A、=,不是最简分式;B、=,不是最简分式;C、,是最简分式;D、=,不是最简分式;故选C.【点睛】本题考查了最简分式:一个分式的分子与分母没有公因式时,叫最简分式.2、A【解析】

根据统计表可求出中位数和众数,无法求出平均数和方差,根据所求结果即可解答.【详解】∵x+y=30-6-8-5-4=7,1.53出现了8次,∴众数是1.53,中位数是(1.53+1.53)÷2=1.53,不随、的变化而变化;∵x与y的值不确定,∴无法求出平均数和方差.故选A.【点睛】此题主要考查了平均数、众数、中位数、方差的统计意义.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.3、B【解析】

利用最简二次根式定义判断即可.【详解】A、=,不符合题意;B、是最简二次根式,符合题意;C、(a>0)=|a|=a,不符合题意;D、=,不符合题意.故选:B.【点睛】此题考查了最简二次根式,熟练掌握最简二次根式定义是解本题的关键.最简二次根式的条件:(1)被开方数的因数是整数或字母,因式是整式;(2)被开方数中不含有可化为平方数或平方式的因数或因式.4、B【解析】根据平行四边形、矩形、菱形、正方形的判定方法一一判断即可.解:∵∠ACB=∠EFD=30°,∴AC∥DF,∵AC=DF,∴四边形AFDC是平行四边形,选项A正确;当E是BC中点时,无法证明∠ACD=90°,选项B错误;B、E重合时,易证FA=FD,∵四边形AFDC是平行四边形,∴四边形AFDC是菱形,选项C正确;当四边相等时,∠AFD=60°,∠FAC=120°,∴四边形AFDC不可能是正方形,选项D正确.故选B.点睛:本题考查平行四边形、矩形、菱形、正方形的判定.熟练应用平行四边形、矩形、菱形、正方形的判定方法进行证明是解题的关键.5、B【解析】

可以看出此题是用平方差公式分解因式,可以根据整式乘法与因式分解是互逆运算变形得出.平方差公式:a2-b2=(a+b)(a-b).【详解】由(x2+4)(x+2)(x-▲)得出▲=2,则(x2+4)(x+2)(x-2)=(x2+4)(x2-4)=x4-1,则■=1.故选B.【点睛】此题考查了学生用平方差公式分解因式的掌握情况,灵活性比较强.6、A【解析】

延长AE交BC于N点,过B点作BM⊥AN于M点,过N点作NH⊥FC于H点,在Rt△ABM和Rt△BMN中,易得cos∠BAM=cos∠MBN,即,解得BN=,从而求出CN长度,在Rt△HNC中,利用cos∠HNC=cos∠MBN=,求出NH长度,最后借助EF=NH即可.【详解】解:延长AE交BC于N点,过B点作BM⊥AN于M点,过N点作NH⊥FC于H点,因为正方形的面积为23,所以正方形的边长为3.在Rt△ABM中,AB=3,BM=3,利用勾股定理可得AM=2.∵∠BAM+∠ABM=90°,∠NBM+∠ABM=90°,∴∠MBN=∠BAM.∴cos∠BAM=cos∠MBN,即,解得BN=.∴CN=BC-BN=.∵∠HNC=∠MBN,∴cos∠HNC=cos∠MBN=.∴,解得NH=3.∵a∥c,EF⊥FC,NH⊥FC,∴EF=NH=3.故选:A.【点睛】本题考查正方形的性质、平行线间的距离、解直角三角形,解题的关键是根据题意作出辅助线,转化角和边.7、D【解析】

先根据等腰直角三角形的性质及已知条件得出∠DAB=∠DBA=30°,则AD=BD,再证明CD是边AB的垂直平分线,得出∠ACD=∠BCD=45°,然后根据三角形外角的性质求出∠CDE=∠BDE=60°即可判断①②;利用差可求得结论:∠CDE=∠BCE-∠ACB=60°,即可判断③;证明△DCG是等边三角形,再证明△ACD≌△ECG,利用线段的和与等量代换即可判断④.【详解】解:∵△ABC是等腰直角三角形,∠ACB=90°,

∴∠BAC=∠ABC=45°,

∵∠CAD=∠CBD=15°,

∴∠BAD=∠ABD=45°-15°=30°,

∴BD=AD,

∴D在AB的垂直平分线上,

∵AC=BC,

∴C也在AB的垂直平分线上,

即直线CD是AB的垂直平分线,

∴∠ACD=∠BCD=45°,

∴∠CDE=∠CAD+∠ACD=15°+45°=60°,

∵∠BDE=∠DBA+∠BAD=60°;

∴∠CDE=∠BDE,

即DE平分∠BDC;

所以①②正确;

∵CA=CB,CB=CE,

∴CA=CE,

∵∠CAD=∠CBD=15°,

∴∠BCE=180°-15°-15°=150°,

∵∠ACB=90°,

∴∠ACE=150°-90°=60°,

∴△ACE是等边三角形;

所以③正确;∵,∠EDC=60°,

∴△DCG是等边三角形,

∴DC=DG=CG,∠DCG=60°,

∴∠GCE=150°-60°-45°=45°,

∴∠ACD=∠GCE=45°,

∵AC=CE,

∴△ACD≌△ECG,

∴EG=AD,

∴DE=EG+DG=AD+DC,

所以④正确;

正确的结论有:①②③④;

故选:D.【点睛】本题考查了等腰三角形、全等三角形的性质和判定、等腰直角三角形、等边三角形等特殊三角形的性质和判定,熟练掌握有一个角是60°的等腰三角形是等边三角形这一判定等边三角形的方法,在几何证明中经常运用.8、B【解析】

设提速前列车的平均速度为x千米/小时,则提速之后的速度为(x+20)千米/小时,根据题意可得,相同的时间提速之后比提速之前多走50千米,据此列方程.【详解】设提速前列车的平均速度为x千米/小时,由题意得:.故选B.【点睛】考查了由实际问题抽象出分式方程问题,解答此类问题的关键是分析题意找出相等关系,(1)在确定相等关系时,一是要理解一些常用的数量关系和一些基本做法,如行程问题中的相遇问题和追击问题,最重要的是相遇的时间相等、追击的时间相等.(2)列分式方程解应用题要多思、细想、深思,寻求多种解法思路.9、B【解析】试题分析:由图形可得点(4,20)和(12,30),然后设直线的解析式为y=kx+b,代入可得,解得,得到函数的解析式为y=x+15,代入x=8可得y=25.故选:B点睛:此题主要考察了一次函数的图像与性质,先利用待定系数法求出函数的解析式,然后代入可求解.10、B【解析】

根据勾股定理进行判断即可得到答案.【详解】A.∵32+42=52,∴△ABC是直角三角形;B.∵52+42≠62,∴△ABC不是直角三角形;C.∵62+82=102,∴△ABC是直角三角形;D.∵122+42=132,∴△ABC是直角三角形;故选:B.【点睛】本题考查勾股定理的应用,解题的关键是掌握勾股定理.11、C【解析】

根据最简二次根式的定义对各选项分析判断即可.【详解】解:A、是最简二次根式,不合题意,故本选项错误;B、是最简二次根式,不合题意,故本选项错误;C、因为=2,所以不是最简二次根式,符合题意,故本选项正确;D、是最简二次根式,不合题意,故本选项错误;故选C.【点睛】本题考查了最简二次根式的定义,根据定义,最简二次根式必须满足被开方数不含分母且不含能开得尽方的因数或因式.12、D【解析】

方程两边同时乘以x(x-1)化为整式方程,解整式方程后进行验根即可得.【详解】方程两边同时乘以x(x-1),得x2-1=x(x-1),解得:x=1,检验:当x=1时,x(x-1)=0,所以原分式方程无解,故选D.【点睛】本题考查了解分式方程,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.二、填空题(每题4分,共24分)13、【解析】

根据平均数确定出a后,再根据方差的公式S2=[(x1-)2+(x2-)2+…+(xn-)2]计算方差.【详解】解:由平均数的公式得:(1+a+3+6+7)÷5=4,解得a=3;∴方差=[(1-4)2+(3-4)2+(3-4)2+(6-4)2+(7-4)2]÷5=.故答案为.【点睛】此题考查了平均数和方差的定义.平均数是所有数据的和除以所有数据的个数.方差的公式S2=[(x1-)2+(x2-)2+…+(xn-)2].14、1【解析】

过点C作CF⊥AB于F,由角平分线的性质得CD=CF,CE=CF,于是可证△ADC≌△AFC,△CBE≌△CBF,可得AD=AF,BE=BF,即可得结论.【详解】解:如图,过点C作CF⊥AB于F,

∵AC,BC分别平分∠BAD,∠ABE,

∴CD=CF,CE=CF,

∵AC=AC,BC=BC,

∴△ADC≌△AFC,△CBE≌△CBF,

∴AF=AD=5,BF=BE=2,

∴AB=AF+BF=1.故答案是:1.【点睛】本题考查全等三角形的判定和性质,角平分线的性质,添加恰当辅助线构造全等三角形是本题的关键.15、【解析】

由△ADE≌△DCF可导出四边形CEPF对角互补,而CE=CF,于是将△CEP绕C点逆时针旋转90°至△CFG,可得△CPG是等腰直角三角形,从而PG=PF+FG=PF+PE=CP,求出PE和PF的长度即可求出PC的长度.【详解】解:如图,作CG⊥CP交DF的延长线于G.则∠PCF+∠GCF=∠PCG=90°,∵四边形ABCD是边长为2的正方形,∴AD=CD=BC=AB=2,∠ADC=∠DCB=90°,∵E、F分别为CD、BC中点,∴DE=CE=CF=BF=1,∴AE=DF=,∴DP==,∴PE=,PF=,在△ADE和△DCF中:∴△ADE≌△DCF(SAS),∴∠AED=∠DFC,∴∠CEP=∠CFG,∵∠ECP+∠PCF=∠DCB=90°,∴∠ECP=∠FCG,在△ECP和△FCG中:∴△ECP≌△FCG(ASA),∴CP=CG,EP=FG,∴△PCG为等腰直角三角形,∴PG=PF+FG=PF+PE==CP,∴CP=.故答案为:.【点睛】本题考查了正方形的性质,全等三角形的判定与性质等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.16、x<﹣1【解析】

观察函数图象得到当x<-1时,直线y=k1x+b1在直线y=k1x+b1的上方,于是可得到不等式k1x+b1>k1x+b1的解集.【详解】当x<-1时,k1x+b1>k1x+b1,所以不等式k1x+b1>k1x+b1的解集为x<-1.故答案为x<-1.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.17、(x+2)(x-1)=0【解析】根据因式分解法解一元二次方程的方法,可得方程为(x+2)(x-1)=0.18、两个角相等【解析】

交换原命题的题设与结论即可得到逆命题,然后根据命题的定义求解.【详解】解:命题“对顶角相等”的逆命题是:“如果两个角相等,那么这两个角是对顶角”,题设是:两个角相等故答案为:两个角相等.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.三、解答题(共78分)19、(1);(2)应投放件,最大利润为元;(3)满足条件时的值为【解析】

(1)根据利润=(售价-成本)数量即可求出与之间的函数关系式.(2)y与之间是一次函数关系式,根据一次函数的性质可知当x=125时y有最大值;(3)捐献资金后获得的收益为;当时时有最大值18000,即可求出a值.【详解】(1)(2)由题意可知,即由一次函数的性质可知.越大,越大当时∴应投放件,最大利润为元.(3)一共捐出元∴∴当时最大值小于当时时有最大值.即∴即满足条件时的值为.【点睛】本题考查一次函数的应用知识,解题的关键是理解题意,学会构建一次函数解决问题.20、(1);(2)【解析】

(1)根据待定系数法即可解决;(2)观察图像即可得出答案.【详解】解:(1)∵图像经过点A∴当时,∴∵图像经过点且与轴交于点∴解得:所以这个一次函数解析式为(2)∵一次函数与正比例函数相交于交点,观察图像可知,当时,,∴答案为.【点睛】此题主要考查了待定系数法求一次函数、全等三角形的判定和性质、勾股定理等知识,学会分类讨论的数学思想是正确解题的关键.21、(1),理由见解析;(2);(3).【解析】

(1)BG=EG,根据已知条件易证△BAG≌△EFG,根据全等三角形的对应边相等即可得结论;(2)①方法一:过点G作GM∥BH,交DH于点M,证明ΔGME∽ΔBHE,即可得,再证明是等边三角形,可得,由此可得;方法二:延长,交于点,证明ΔHBM为等边三角形,再证明∽,即可得结论;②如图3,连接EC交DF于O根据三角函数定义得cosα=,则OF=bcosα,DG=a+2bcosα,同理表示AH的长,代入计算即可.【详解】(1),理由如下:∵四边形是平行四边形,∴∥,.∵四边形是菱形,∴∥,.∴∥,.∴.又∵,∴≌.∴.(2)方法1:过点作∥,交于点,∴.∵,∴∽.∴.由(1)结论知.∴.∴.∵四边形为菱形,∴.∵四边形是平行四边形,∴∥.∴.∵∥,∴.∴,即.∴是等边三角形。∴.∴.方法2:延长,交于点,∵四边形为菱形,∴.∵四边形为平形四边形,∴,∥.∴.,即.∴为等边三角形.∴.∵∥,∴,.∴∽,∴.由(1)结论知∴.∴.∵,∴.(3).如图3,连接EC交DF于O,∵四边形CFED是菱形,∴EC⊥AD,FD=2FO,设FG=a,AB=b,则FG=a,EF=ED=CD=b,Rt△EFO中,cosα=,∴OF=bcosα,∴DG=a+2bcosα,过H作HM⊥AD于M,∵∠ADC=∠HAD=∠ADH=α,∴AH=HD,∴AM=AD=(2a+2bcosα)=a+bcosα,Rt△AHM中,cosα=,∴AH=,∴==cosα.【点睛】本题是四边形综合题,其中涉及到菱形的性质,等边三角形、全等三角形、平行四边形的判定与性质,综合性较强,难度适中.利用数形结合及类比思想是解题的关键.22、(1)见解析;(2)①BH=AF,理由见解析,②正方形EFGH的边长为.【解析】

(1)根据正方形的对角线互相垂直平分可得AE=BE,∠BEH=∠AEF=90°,然后利用“边角边”证明△BEH和△AEF全等,根据全等三角形对应边相等即可得证;

(2)①连接EG,根据正方形的性质得到AE=BE,∠BEA=90°,EF=EH,∠HEF=90°,根据全等三角形的性质即可得到结论;

②如备用图,根据平行四边形的性质得到AH∥BD,AH=BD,于是得到∠EAH=∠AEB=90°,根据勾股定理即可得到结论;【详解】(1)在正方形ABCD中,AE=BE,∠BEH=∠AEF=90°,∵四边形EFGH是正方形,∴EF=EH,∵在△BEH和△AEF中,∴△BEH≌△AEF(SAS),∴BH=AF;(2)①BH=AF,理由:连接EG,∵四边形ABCD是正方形,∴AE=BE,∠BEA=90°,∵四边形EFGH是正方形,∴EF=EH,∠HEF=90°,∴∠BEA+∠AEH=∠HEF+∠AEH,即∠BEH=∠AEF,在△BEH与△AEF中,,∴△BEH≌△AEF,∴BH=AF;②如备用图,∵四边形ABDH是平行四边形,∴AH∥BD,AH=BD,∴∠EAH=∠AEB=90°,∵四方形ABCD的边长为,∴AE=BE=CE=DE=1,∴EH===,∴正方形EFGH的边长为.【点睛】本题考查了正方形的性质,旋转的性质,全等三角形的判定和性质,勾股定理,正确作出图形是解题的关键.23、(1)①见详解,②1;(2)-【解析】

(1)①过点P作PM⊥CA于点M,作PN⊥CB于点N,易证四边形MCNP是矩形,利用已知条件再证明△APM≌△BPN,因为PM=PN,所以CP平分∠ACB;②由题意可证四边形MCNP是正方形,(2)如图,以AC为边作等边△AEC,连接BE,过点E作EF⊥BC于F,由”SAS“可证△ABE≌△APC,可得BE=CP=5,由直角三角形的性质和勾股定理可求BC的长.【详解】证明:(1)①如图1,过点P作PM⊥CA于点M,作PN⊥CB于点N,∴∠PMC=∠PNC=90°,∵∠ACB=90°∴四边形MCNP是矩形,∴∠MPN=90°,∵PA=PB,∠APB=90°,∴∠MPN−∠APN=∠APB−∠APN,∴∠APM=∠NPB,∵∠PMA=∠PNB=90°,在△APM和△BPN中,∴△APM≌△BPN(AAS),∴PM=PN,∴CP平分∠ACB;②∵四边形MCNP是矩形,且PN=PM,∴四边形MCNP是正方形,∴PN=CN=PM=CM∴PC=PN=6,∴PN=6=CN=CM=MP∴AM=CM−AC=1∵△APM≌△BPN∴AM=BN,∴BC=CN+BN=6+AM=6+1=1.(2)如图,以AC为边作等边△AEC,连接BE,过点E作EF⊥BC于F,∵△AEC是等边三角形∴AE=AC=EC=5,∠EAC=∠ACE=60°,∵△APB是等腰三角形,且∠APB=60°∴△APB是等边三角形,∴∠PAB=60°=∠EAC,AB=AP,∴∠EAB=∠CAP,且AE=AC,AB=AP,∴△ABE≌△APC(SAS)∴BE=CP=5,∵∠ACE=60°,∠ACB=90°,∴∠ECF=30°,∴EF=EC=,FC=EF=,∵BF=,∴BC=BF−CF=-【点睛】本题是四

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论