2024届江苏省姜堰区八年级下册数学期末学业质量监测模拟试题含解析_第1页
2024届江苏省姜堰区八年级下册数学期末学业质量监测模拟试题含解析_第2页
2024届江苏省姜堰区八年级下册数学期末学业质量监测模拟试题含解析_第3页
2024届江苏省姜堰区八年级下册数学期末学业质量监测模拟试题含解析_第4页
2024届江苏省姜堰区八年级下册数学期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省姜堰区八年级下册数学期末学业质量监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是()A. B. C. D.2.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,四边形ABCD是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当∠ABC=90°时,四边形ABCD是矩形D.当AC=BD时,四边形ABCD是正方形3.使分式有意义的x的取值范围是()A.x≥1 B.x≤1 C.x≠1 D.x>14.下列语句中,属于命题的是()A.任何一元二次方程都有实数解 B.作直线AB的平行线C.∠1与∠2相等吗 D.若2a2=9,求a的值5.函数y=﹣x的图象与函数y=x+1的图象的交点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.有位同学参加歌咏比赛,所得的分数互不相同,取得分前位同学进入决赛,小明知道自己的分数后,要判断自己能否进入决赛,他只需知道这位同学得分的()A.平均数 B.中位数 C.众数 D.方差7.抛物线y=-3x2-4的开口方向和顶点坐标分别是()A.向下,(0,4) B.向下,(0,-4)C.向上,(0,4) D.向上,(0,-4)8.已知,则的值是()A. B.5 C. D.69.在直角坐标系中,若点Q与点P(2,3)关于原点对称,则点Q的坐标是(

)A.(-2,3) B.(2,-3) C.(-2,-3) D.(-3,-2)10.下列计算错误的是()A.÷=3 B.=5C.2+=2 D.2•=2二、填空题(每小题3分,共24分)11.式子有意义,则实数的取值范围是______________.12.如图,点A是x轴上的一个动点,点C在y轴上,以AC为对角线画正方形ABCD,已知点C的坐标是,设点A的坐标为.当时,正方形ABCD的边长______.连结OD,当时,______.13.已知一组数据3、a、4、6的平均数为4,则这组数据的中位数是______.14.如图,△ABC中,AB=AC,点B在y轴上,点A、C在反比例函数y=(k>0,x>0)的图象上,且BC∥x轴.若点C横坐标为3,△ABC的面积为,则k的值为______.15.如图,四边形ABCD是梯形,AD∥BC,AC=BD,且AC⊥BD,如果梯形ABCD的中位线长是5,那么这个梯形的高AH=___.16.如图,在△ABC中,BD,CE分别是边AC,AB上的中线,BD与CE相交于点O,则CE与EO之间的数量关系是_____.17.某市出租车白天的收费起步价为10元,即路程不超过时收费10元,超过部分每千米收费2元,如果乘客白天乘坐出租车的路程为,乘车费为元,那么与之间的关系式为__________________.18.如图,矩形ABCD的对角线AC=8cm,∠AOD=120°,则AB的长为cm.三、解答题(共66分)19.(10分)如图,在直角梯形ABCD中,AD∥BC,∠B=90°,且AD=12cm,AB=8cm,DC=10cm,若动点P从A点出发,以每秒2cm的速度沿线段AD向点D运动;动点Q从C点出发以每秒3cm的速度沿CB向B点运动,当P点到达D点时,动点P、Q同时停止运动,设点P、Q同时出发,并运动了t秒,回答下列问题:(1)BC=cm;(2)当t为多少时,四边形PQCD成为平行四边形?(3)当t为多少时,四边形PQCD为等腰梯形?(4)是否存在t,使得△DQC是等腰三角形?若存在,请求出t的值;若不存在,说明理由.20.(6分)甲、乙两人加工一种零件,甲比乙每小时多加工10个零件,甲加工150个零件所用的时间与乙加工120个零件所用的时间相等.(1)求甲每小时加工多少个零件?(2)由于厂家在12小时内急需一批这种零件不少于1000件,决定由甲、乙两人共同完成.乙临时有事耽搁了一段时间,先让甲单独完成一部分零件后两人合作完成剩下的零件.求乙最多可以耽搁多长时间?21.(6分)请阅读下列材料:问题:现有5个边长为1的正方形,排列形式如图①,请把它们分割后拼接成一个新的正方形,要求:画出分割线并在正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.小东同学的做法是:设新正方形的边长为x(x>0),依题意,割补前后图形的面积相等,有x2=5,解得,由此可知新正方形的边长等于两个小正方形组成的矩形对角线的长,于是,画出如图②所示的分割线,拼出如图③所示的新正方形.请你参考小东同学的做法,解决如下问题:现有10个边长为1的正方形,排列形式如图④,请把它们分割后拼接成一个新的正方形,要求:在图④中画出分割线,并在图⑤的正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.(说明:直接画出图形,不要求写分析过程.)22.(8分)如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为24,求BC的长度.23.(8分)如图,在中,为的中点,,.动点从点出发,沿方向以的速度向点运动;同时动点从点出发,沿方向以的速度向点运动,运动时间是秒.(1)用含的代数式表示的长度.(2)在运动过程中,是否存在某一时刻,使点位于线段的垂直平分线上?若存在,求出的值;若不存在,请说明理由.(3)是否存在某一时刻,使?若存在,求出的值;若不存在,请说明理由.(4)是否存在某一时刻,使?若存在,求出的值;若不存在,请说明理由.24.(8分)如图,在平面直角坐标系中,为坐标原点,的三个顶点坐标分别为,,,与关于原点对称.(1)写出点、、的坐标,并在右图中画出;(2)求的面积.25.(10分)如图,已知直线y1经过点A(-1,0)与点B(2.3),另一条直线y2经过点B,且与x轴交于点P(m.0).(1)求直线y1的解析式;(2)若三角形ABP的面积为,求m的值.26.(10分)已知四边形ABCD是正方形,点E是边BC上的任意一点,AE⊥EF,且直线EF交正方形外角的平分线CF于点F.(1)如图1,求证:AE=EF;(2)如图2,当AB=2,点E是边BC的中点时,请直接写出FC的长.

参考答案一、选择题(每小题3分,共30分)1、D【解析】

根据分式的基本性质,x,y的值均扩大为原来的3倍,求出每个式子的结果,看结果等于原式的即是答案.【详解】根据分式的基本性质,可知若x,y的值均扩大为原来的3倍,A、,错误;B、,错误;C、,错误;D、,正确;故选D.【点睛】本题考查的是分式的基本性质,即分子分母同乘以一个不为0的数,分式的值不变.此题比较简单,但计算时一定要细心.2、D【解析】

根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形.【详解】A.根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故本选项不符合题意;B.根据对角线互相垂直的平行四边形是菱形知:当AC⊥BD时,四边形ABCD是菱形,故本选项不符合题意;C.根据有一个角是直角的平行四边形是矩形知:当∠ABC=90°时,四边形ABCD是矩形,故本选项不符合题意;D.根据对角线相等的平行四边形是矩形可知:当AC=BD时,它是矩形,不是正方形,故本选项符合题意;故选:D.【点睛】此题考查平行四边形的性质,菱形的判定,矩形的判定,正方形的判定,解题关键在于掌握判定定理.3、C【解析】

分式的分母不为零,即x-1≠1.【详解】解:当分母x-1≠1,即x≠1时,分式有意义;

故选:C.【点睛】从以下三个方面透彻理解分式的概念:

(1)分式无意义⇔分母为零;

(2)分式有意义⇔分母不为零;

(3)分式值为零⇔分子为零且分母不为零.4、A【解析】

用命题的定义进行判断即可(命题就是判断一件事情的句子).【详解】解:A项是用语言可以判断真假的陈述句,符合命题定义,是命题,B、C、D三项均不是判断一件事情的句子,都不是命题,故选A.【点睛】本题考查了命题的定义:命题就是判断一件事情的句子.一般来说,命题都可以表示成“如果…那么…”的形式,如本题中的A项就可表示成“如果一个方程是一元二次方程,那么这个方程有实数解”,而其它三项皆不可.5、B【解析】试题分析:先把与组成方程组求得交点坐标,即可作出判断.由解得所以函数的图象与函数的图象的交点在第二象限故选B.考点:点的坐标点评:平面直角坐标系内各个象限内的点的坐标的符号特征:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).6、B【解析】

由中位数的概念,即最中间一个或两个数据的平均数;可知9人成绩的中位数是第5名的成绩.根据题意可得:参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】解:由于9个人中,第5名的成绩是中位数,故小明同学知道了自己的分数后,想知道自己能否进入决赛,需知道这9位同学的分数的中位数.

故选:B.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.7、B【解析】试题分析:在抛物线y=-3x2-4中a<0,所以开口向下;b=0,对称轴为x=0,所以顶点坐标为(0,-4),故选B.8、D【解析】

利用非负性,得到,解出与的值,即可解得.【详解】由得:则:所以:,故答案选D.【点睛】本题考查了绝对值与二次根式的非负性,解答即可.9、C【解析】

关于原点对称的坐标的特点为,横坐标和纵坐标都是互为相反数,据此解答即可.【详解】解:∵Q与P(2,3)关于原点对称,则Q(-2,-3).故答案为:C【点睛】本题考查了平面直角坐标系中点的对称,掌握点的对称特点是解题的关键.10、C【解析】

根据二次根式的运算法则及二次根式的性质逐一计算即可判断.【详解】解:A、÷=3÷=3,此选项正确;B、=5,此选项正确;C、2、不能合并,此选项错误,符合题意;D、2•=2,此选项正确;故选C.【点睛】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则及二次根式的性质.二、填空题(每小题3分,共24分)11、且【解析】分析:直接利用二次根式的定义:被开方数大于等于零,分式有意义的条件:分母不为零,分析得出答案.详解:式子有意义,则+1≥0,且-2≠0,解得:≥-1且≠2.故答案:且.点睛:本题主要考查了二次根式有意义的条件及分式有意义的条件.12、;4或6【解析】

(4)在RtAOC中,利用勾股定理求出AC的长度,然后再求得正方形的边长即可;(4)先求得OD与y轴的夹角为45〬,然后依据OD的长,可求得点D的坐标,过D作DM⊥y轴,DN⊥x轴,接下来,再证明△DNA≌△DMC,从而可得到CM=AM,从而可得到点A的坐标.【详解】解:(4)当n=4时,OA=4,

在Rt△COA中,AC4=CO4+AO4=4.

∵ABCD为正方形,

∴AB=CB.

∴AC4=AB4+CB4=4AB4=4,

∴AB=.

故答案为.

(4)如图所示:过点D作DM⊥y轴,DN⊥x轴.

∵ABCD为正方形,

∴A、B、C、D四点共圆,∠DAC=45°.

又∵∠COA=90°,

∴点O也在这个圆上,

∴∠COD=∠CAD=45°.

又∵OD=,

∴DN=DM=4.

∴D(-4,4).

在Rt△DNA和Rt△DMC中,DC=AD,DM=DN,

∴△DNA≌△DMC.

∴CM=AN=OC-MO=3.

∵D(-4,4),

∴A(4,0).

∴n=4.

如下图所示:过点D作DM⊥y轴,DN⊥x轴.

∵ABCD为正方形,

∴A、B、C、D四点共圆,∠DAC=45°.

又∵∠COA=90°,

∴点O也在这个圆上,

∴∠AOD=∠ACD=45°.

又∵OD=,

∴DN=DM=4.

∴D(4,-4).

同理:△DNA≌△DMC,则AN=CM=5.

∴OA=ON+AN=4+5=6.

∴A(6,0).

∴n=6.

综上所述,n的值为4或6.

故答案为4或6.【点睛】本题考核知识点:正方形性质、全等三角形性质,圆等.解题关键点:熟记相关知识点.13、3.5【解析】

先根据平均数的计算公式求出x的值,再根据中位数的定义即可得出答案.【详解】∵数据3、a、4、6的平均数是4,∴(3+a+4+6)÷4=4,∴x=3,把这组数据从小到大排列为:3、3、4、6最中间的数是3.5,则中位数是3.5;故答案为:3.5.【点睛】此题考查中位数,算术平均数,解题关键在于利用平均数求出a的值.14、.【解析】

先利用面积求出△ABC的高h,然后设出C点的坐标,进而可写出点A的坐标,再根据点A,C都在反比例函数图象上,建立方程求解即可.【详解】设△ABC的高为h,∵S△ABC=BC•h=3h=,∴h=.∵,∴点A的横坐标为.设点C(3,m),则点A(,m+),∵点A、C在反比例函数y=(k>0,x>0)的图象上,则k=3m=(m+),解得,则k=3m=,故答案为:.【点睛】本题主要考查反比例函数与几何综合,找到A,C坐标之间的关系并能够利用方程的思想是解题的关键.15、1.【解析】

过点D作DF∥AC交BC的延长线于F,作DE⊥BC于E.可得四边形ACFD是平行四边形,根据平行四边形的性质可得AD=CF,再判定△BDF是等腰直角三角形,根据等腰直角三角形的性质求出AH=BF解答.【详解】如图,过点D作DF∥AC交BC的延长线于F,作DE⊥BC于E.则四边形ACFD是平行四边形,∴AD=CF,∴AD+BC=BF,∵梯形ABCD的中位线长是1,∴BF=AD+BC=1×2=10.∵AC=BD,AC⊥BD,∴△BDF是等腰直角三角形,∴AH=DE=BF=1,故答案为:1.【点睛】本题考查了梯形的中位线,等腰直角三角形的判定与性质,平行四边形的判定与性质,梯形的问题关键在于准确作出辅助线.16、CE=3EO【解析】

根据三角形的中位线得出DE=BC,DE∥BC,根据相似三角形的判定得出△DOE∽△BOC,根据相似三角形的性质求出CO=2EO即可.【详解】.解:CE=3EO,理由是:连接DE,∵在△ABC中,BD,CE分别是边AC,AB上的中线,∴DE=BC,DE∥BC,∴△DOE∽△BOC,∴=,∴CO=2EO,∴CE=3EO,故答案为:CE=3EO.【点睛】.本题考查了三角形的中位线定理和相似三角形的性质和判定,能求出DE=BC和△DOE∽△BOC是解此题的关键.17、【解析】

根据乘车费用=起步价+超过3千米的付费得出.【详解】解:依题意有:y=10+2(x-3)=2x+1.

故答案为:y=2x+1.【点睛】根据题意,找到所求量的等量关系是解决问题的关键.本题乘车费用=起步价+超过3千米的付费18、4.【解析】试题解析:∵四边形ABCD是矩形,∴OA=AC,OB=BD,BD=AC=8cm,∴OA=OB=4cm,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=4cm.考点:矩形的性质.三、解答题(共66分)19、(1)18cm(2)当t=125秒时四边形PQCD为平行四边形(3)当t=245时,四边形PQCD为等腰梯形(4)存在t,t的值为103【解析】试题分析:(1)作DE⊥BC于E,则四边形ABED为矩形.在直角△CDE中,已知DC、DE的长,根据勾股定理可以计算EC的长度,根据BC=BE+EC即可求出BC的长度;(2)由于PD∥QC,所以当PD=QC时,四边形PQCD为平行四边形,根据PD=QC列出关于t的方程,解方程即可;(3)首先过D作DE⊥BC于E,可求得EC的长,又由当PQ=CD时,四边形PQCD为等腰梯形,可求得当QC-PD=QC-EF=QF+EC=2CE,即3t-(12-2t)=12时,四边形PQCD为等腰梯形,解此方程即可求得答案;(4)因为三边中,每两条边都有相等的可能,所以应考虑三种情况.结合路程=速度×时间求得其中的有关的边,运用等腰三角形的性质和解直角三角形的知识求解.试题解析:根据题意得:PA=2t,CQ=3t,则PD=AD-PA=12-2t.(1)如图,过D点作DE⊥BC于E,则四边形ABED为矩形,DE=AB=8cm,AD=BE=12cm,在直角△CDE中,∵∠CED=90°,DC=10cm,DE=8cm,∴EC=DC∴BC=BE+EC=18cm.(2)∵AD∥BC,即PD∥CQ,∴当PD=CQ时,四边形PQCD为平行四边形,即12-2t=3t,解得t=125故当t=125(3)如图,过D点作DE⊥BC于E,则四边形ABED为矩形,DE=AB=8cm,AD=BE=12cm,当PQ=CD时,四边形PQCD为等腰梯形.过点P作PF⊥BC于点F,过点D作DE⊥BC于点E,则四边形PDEF是矩形,EF=PD=12-2t,PF=DE.在Rt△PQF和Rt△CDE中,PQ=CDPF=DE∴Rt△PQF≌Rt△CDE(HL),∴QF=CE,∴QC-PD=QC-EF=QF+EC=2CE,即3t-(12-2t)=12,解得:t=245即当t=245(4)△DQC是等腰三角形时,分三种情况讨论:①当QC=DC时,即3t=10,∴t=103②当DQ=DC时,3t∴t=4;③当QD=QC时,3t×6∴t=259故存在t,使得△DQC是等腰三角形,此时t的值为103秒或4秒或25考点:四边形综合题.20、(1)甲每小时加工50个零件,则乙每小时加工40个零件;(2)2小时.【解析】

(1)主要利用甲加工150个零件所用的时间与乙加工120个零件所用的时间相等,建立等式关系,即可求解,(2)乙最多可以耽搁多长时间,这是一个不等式,把乙的完成的工作量+甲完成的工作量≥1000,【详解】解:(1)设甲每小时加工x个零件,则乙每小时加工(x﹣10)个零件,根据题意,得:=,解得:x=50,经检验x=50是分式方程的解,答:甲每小时加工50个零件,则乙每小时加工40个零件;(2)设乙耽搁的时间为x小时,根据题意,得:50x+(50+40)(12﹣x)≥1000,解得:x≤2,答:乙最多可以耽搁2小时.【点睛】本题主要考查分式方程和一元一次不等式的实际应用21、见解析.【解析】

参考小东同学的做法,可得新正方形的边长为,由此可知新正方形的边长等于三个小正方形组成的矩形对角线的长.于是,画出分割线,拼出新正方形即可.【详解】解:所画图形如图所示.【点睛】此题主要考查对正方形与三角形之间关系的灵活掌握.22、BC=1.【解析】

根据等腰三角形的性质可得AD⊥BC,再根据在直角三角形中,斜边上的中线等于斜边的一半可得答案【详解】解:∵AB=AC,AD平分∠BAC,∴AD⊥BC,∴∠ADC=90°,∵点E为AC的中点,∴DE=CE=AC=.∵△CDE的周长为24,∴CD=9,∴BC=2CD=1.【点睛】此题考查等腰三角形的性质和直角三角形斜边上的中线,解题关键在于等腰三角形的性质得出AD⊥BC23、(1)CP=8-3t;(2)见解析;(3)见解析;(4)见解析.【解析】

(1)直接利用即可求解;(2)根据线段垂直平分线的性质可得,列方程求解即可;(3)根据全等三角形的性质可得若,因为,,所以只需,列方程求出的值即可;(4)若,因为,所以需满足且,即且,没有符合条件的t的值,故不存在.【详解】解:(1);(2)若点位于线段的垂直平分线上,则,即,解得.所以存在,秒时点位于线段的垂直平分线上.(3)若,因为,,所以只需,即,解得,所以存在.(4)若,因为,所以需满足且,即且,所以不存在.【点睛】本题考查全等三角形的判定和性质及动点运动问题,对于运动型的问题,关键是用时间t表示出相应的线段的长度,能根据题意列方程求解.24、(1)、、,作图见解析;(2)6【解析】

(1)利用关于原点对称的点的坐标特征写出点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)利用三角形面积公式计算.【详解】解:(1)如图,△A1B1C1为所作,∴、、;(2);【点睛】本题考查三角形的面积计算,难度不大,解决本题的关键是正确掌握关于原点对称的点的坐标的特点.25、(1)y1=x+1;(2)m=1或m=-2.【解析】

(1)设直线y1的解析式为y=kx+b

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论