安徽省黄山市区县2024年数学八年级下册期末监测模拟试题含解析_第1页
安徽省黄山市区县2024年数学八年级下册期末监测模拟试题含解析_第2页
安徽省黄山市区县2024年数学八年级下册期末监测模拟试题含解析_第3页
安徽省黄山市区县2024年数学八年级下册期末监测模拟试题含解析_第4页
安徽省黄山市区县2024年数学八年级下册期末监测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省黄山市区县2024年数学八年级下册期末监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.正方形ABCD在坐标系中的位置如图所示,将正方形ABCD绕D点顺时针方向旋转90°后,C点的坐标为()A.(﹣1,2) B.(2,0) C.(2,1) D.(2,﹣1)2.一个多边形的每一个外角都等于40°,则这个多边形的内角和是.()A.360° B.980° C.1260° D.1620°3.已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是()A. B. C.D4.点3,-4到y轴的距离为()A.3 B.4 C.5 D.-45.如图,在▱ABCD中,AC⊥BD于点O,点E为BC中点,连接OE,OE=,则▱ABCD的周长为()A.4 B.6 C.8 D.126.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12 B.24 C.12 D.167.如图,把一张正方形纸对折两次后,沿虚线剪下一角,展开后所得图形一定是()A.三角形 B.菱形 C.矩形 D.正方形8.六边形的内角和为()A.720° B.360° C.540° D.180°9.一次函数y=kx+b,当k<0,b<0时,它的图象大致为()A. B. C. D.10.在平面直角坐标系中,函数的图象经过()A.第一、二、三象限 B.第一、二、四象限C.第一、三、四象限 D.第二、三、四象限11.如图,在□ABCD中,AB⊥AC,若AB=4,AC=6,则BD的长是()A.11 B.10 C.9 D.812.如图,在平面直角坐标系中,的顶点在第一象限,点、的坐标分别为、,,,直线交轴于点,若与关于点成中心对称,则点的坐标为()A. B. C. D.二、填空题(每题4分,共24分)13.某中学规定:学生的学期体育综合成绩满分为100分,其中,期中考试成绩占40%,期末考试成绩占60%,小海这个学期的期中、期末成绩(百分制)分别是80分、90分,则小海这个学期的体育综合成绩是分.14.如图,直线与双曲线交于A、B两点,过点A作轴,垂足为M,连结BM,若,则k的值是______.15.如图,是六边形的一个内角.若,则的度数为________.16.直线y=x﹣与y轴的交点是_____.17.已知一次函数y=2x+b,当x=3时,y=10,那么这个一次函数在y轴上的交点坐标为________.18.已知关于的一元二次方程有两个相等的实数根,则的值是__________.三、解答题(共78分)19.(8分)射击队为从甲、乙两名运动员选拔一人参加运动会,对他们进行了六次测试,测试成绩如下表(单位:环)第一次第二次第三次第四次第五次第六次甲10898109乙107101098(1)由表格中的数据,计算出甲的平均成绩是环,乙的成绩是环.(2)结合平均水平与发挥稳定性你认为推荐谁参加比赛更适合,请说明理由.20.(8分)化简计算:(1)(2)21.(8分)(1)计算:.(2)解方程:x2﹣5x=022.(10分)如图1,在平面直角坐标系中点,,以为顶点在第一象限内作正方形.反比例函数、分别经过、两点(1)如图2,过、两点分别作、轴的平行线得矩形,现将点沿的图象向右运动,矩形随之平移;①试求当点落在的图象上时点的坐标_____________.②设平移后点的横坐标为,矩形的边与,的图象均无公共点,请直接写出的取值范围____________.23.(10分)先化简,再求值:,其中满足.24.(10分)如图,将边长为4的正方形ABCD纸片沿EF折叠,点C落在AB边上的点G处,点D与点H重合,CG与EF交于点p,取GH的中点Q,连接PQ,则△GPQ的周长最小值是__25.(12分)已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC,(1)证明ABDF是平行四边形;(2)若AF=DF=5,AD=6,求AC的长.26.如图,是的直径,直线与相切于点,且与的延长线交于点,点是的中点.(1)求证:;(2)若,的半径为3,一只蚂蚁从点出发,沿着爬回至点,求蚂蚁爬过的路程,,结果保留一位小数).

参考答案一、选择题(每题4分,共48分)1、D【解析】

利用网格特点和旋转的性质画出正方形ABCD绕D点顺时针方向旋转90°后所得的正方形CEFD,则可得到C点的对应点的坐标.【详解】如图,正方形ABCD绕D点顺时针方向旋转90°后得到正方形CEFD,则C点旋转后的对应点为F(2,﹣1),故选D.【点睛】本题考查了坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.2、C【解析】

先利用360°÷40°求出多边形的边数,再根据多边形的内角和公式(n-2)•180°计算即可求解.【详解】解:360°÷40°=9,∴(9-2)•180°=1260°.故选:C.【点睛】本题主要考查了正多边形的外角与边数的关系,求出多边形的边数是解题的关键.3、D【解析】

先根据三角形的周长公式求出函数关系式,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出x的取值范围,然后选择即可.【详解】由题意得,2x+y=10,所以,y=-2x+10,由三角形的三边关系得,,解不等式①得,x>2.5,解不等式②的,x<5,所以,不等式组的解集是2.5<x<5,正确反映y与x之间函数关系的图象是D选项图象.故选:D.4、A【解析】

根据点到y轴的距离是点的横坐标的绝对值,可得答案.【详解】解:点的坐标(3,-4),它到y轴的距离为|3|=3,故选:A.【点睛】本题考查了点的坐标,点到y轴的距离是点的横坐标的绝对值,点到x轴的距离是点的纵坐标的绝对值.5、C【解析】

在▱ABCD中,AC⊥BD于点O,∴▱ABCD为菱形,则其四边相等,Rt△BOC中,点E为斜边BC中点,∴OE=BE=EC=,从而可求▱ABCD的周长【详解】解:∵AC⊥BD,∴▱ABCD为菱形,则其四边相等且点E为斜边BC中点,∴OE=BE=EC=,∴BC=2,∴▱ABCD的周长=4BC=8故选:C.【点睛】本题主要考查平行四边形的性质,熟练掌握平行四边形的性质是解答本题的关键.6、D【解析】如图,连接BE,∵在矩形ABCD中,AD∥BC,∠EFB=60°,∴∠AEF=110°-∠EFB=110°-60°=120°,∠DEF=∠EFB=60°.∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,∴∠BEF=∠DEF=60°.∴∠AEB=∠AEF-∠BEF=120°-60°=60°.在Rt△ABE中,AB=AE•tan∠AEB=2tan60°=2.∵AE=2,DE=6,∴AD=AE+DE=2+6=1.∴矩形ABCD的面积=AB•AD=2×1=16.故选D.考点:翻折变换(折叠问题),矩形的性质,平行的性质,锐角三角函数定义,特殊角的三角函数值.7、B【解析】

此类问题只有动手操作一下,按照题意的顺序折叠,剪开,观察所得的图形,可得正确的选项.【详解】由题意可得:四边形的四边形相等,故展开图一定是菱形.故选B.【点睛】此题主要考查了剪纸问题,对于一下折叠、展开图的问题,亲自动手操作一下,可以培养空间想象能力.8、A【解析】

根据多边形内角和公式,即可求出.【详解】根据多边形内角和公式,六边形内角和故选A.【点睛】本题考查多边形内角和问题,熟练掌握公式是解题关键.9、B【解析】

根据一次函数的性质可得出结论.【详解】解:因为一次项系数则随的增大而减少,函数经过二,四象限;

常数项则函数一定经过三、四象限;

因而一次函数的图象一定经过第二、三、四象限.

故选B.【点睛】本题考查了一次函数的图像和性质,熟练掌握函数的性质是解题关键.10、D【解析】

由k、b的正负,利用一次函数图象与系数的关系即可得出函数y=-2x-3的图象经过第二、三、四象限,此题得解.【详解】∵k=-2<0,b=-3<0,∴函数y=-2x-3的图象经过第二、三、四象限.故选D.【点睛】本题考查了一次函数图象与系数的关系,牢记“k<0,b<0⇔y=kx+b的图象在二、三、四象限”是解题的关键.11、B【解析】

利用平行四边形的性质可知AO=2,在Rt△ABO中利用勾股定理可得BO=5,则BD=2BO=1.【详解】解:∵四边形ABCD是平行四边形,∴BD=2BO,AO=OC=2.在Rt△ABO中,利用勾股定理可得:BO=3∴BD=2BO=1.故选:B.【点睛】本题主要考查了平行四边形的性质、勾股定理.解题的技巧是平行四边形转化为三角形问题解决.12、A【解析】分析:先求得直线AB解析式为y=x﹣1,即可得P(0,﹣1),再根据点A与点A'关于点P成中心对称,利用中点坐标公式,即可得到点A'的坐标.详解:∵点B,C的坐标分别为(2,1),(6,1),∠BAC=90°,AB=AC,∴△ABC是等腰直角三角形,∴A(4,3),设直线AB解析式为y=kx+b,则,解得,∴直线AB解析式为y=x﹣1,令x=0,则y=﹣1,∴P(0,﹣1),又∵点A与点A'关于点P成中心对称,∴点P为AA'的中点,设A'(m,n),则=0,=﹣1,∴m=﹣4,n=﹣5,∴A'(﹣4,﹣5),故选A.点睛:本题考查了中心对称和等腰直角三角形的运用,利用待定系数法得出直线AB的解析式是解题的关键.二、填空题(每题4分,共24分)13、1【解析】

利用加权平均数的公式直接计算.用80分,90分分别乘以它们的百分比,再求和即可.【详解】小海这学期的体育综合成绩=(80×40%+90×60%)=1(分).故答案为1.14、1【解析】

由题意得:S△ABM=1S△AOM,又S△AOM=|k|,则k的值可求出.【详解】解:设A(x,y),∵直线与双曲线交于A、B两点,∴B(−x,−y),∴S△BOM=|xy|,S△AOM=|xy|,∴S△BOM=S△AOM,∴S△ABM=S△AOM+S△BOM=1S△AOM=1,S△AOM=|k|=1,则k=±1.又由于反比例函数图象位于一三象限,∴k>0,故k=1.故答案为:1.【点睛】本题主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.15、【解析】

根据多边形的内角和=(n-2)x180求出六边形的内角和,把∠E=120°代入,即可求出答案.【详解】解:∵∠A+∠B+∠C+∠D+∠E+∠F=(6-2)×180=720°∵∠E=120°∴∠A+∠B+∠C+∠D+∠F=720°-120°=600°故答案为600°【点睛】本题考查了多边形的内角和外角,能知道多边形的内角和公式是解此题的关键,边数为7的多边形的内角和=(n-2)×180°.16、(0,﹣)【解析】

根据在y轴上点的坐标特征,可知要求直线y=x﹣与y轴的交点坐标就是令x=0【详解】∵当x=0时,y=×0﹣=﹣,∴与y轴的交点坐标是(0,﹣),故答案为:(0,﹣).【点睛】本题考查了一次函数与y轴的交点坐标的求法,正确理解知识是解题的关键.17、(0,4)【解析】解:∵在一次函数y=2x+b中,当x=3时,y=10,∴6+b=10,解得:b=4,∴一次函数的解析式为y=2x+4,∴当x=0时,y=4,∴这个一次函数在y轴上的交点坐标为(0,4).故答案为:(0,4).点睛:本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.18、【解析】

根据方程有两个相等的实数根,可得b2-4ac=0,方程化为一般形式后代入求解即可.【详解】原方程化为一般形式为:mx2+(2m+1)x=0,∵方程有两个相等的实数根∴(2m+1)2-4m×0=0【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的根的判别式,本题属于基础题型.三、解答题(共78分)19、(1)9,9;(2)甲.【解析】分析:1、首先根据图表得出甲、乙每一次的测试成绩,再利用平均数的计算公式分别求出甲、乙的平均成绩;2、得到甲、乙的平均成绩后,再结合方差的计算公式即可求出甲、乙的方差;接下来结合方差的意义,从稳定性方面进行分析,即可得出结果.详解:(1)甲的平均成绩是:(10+8+9+8+10+9)÷6=9,乙的平均成绩是:(10+7+10+10+9+8)÷6=9;(2)甲的方差=[(10-9)2+(8-9)2+(9-9)2+(8-9)2+(10-9)2+(9-9)2]=.乙的方差=[(10-9)2+(7-9)2+(10-9)2+(10-9)2+(9-9)2+(8-9)2]=.推荐甲参加全国比赛更合适,理由如下:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适.点睛:本题考查了平均数以及方差的求法及意义,正确掌握方差的计算公式是解答本题的关键.方差的计算公式为:.20、(1);(2)【解析】

(1)根据分式的加法法则,先通分然后再相加计算即可;(2)根据分式混合运算的运算顺序及运算法则进行计算即可.【详解】解:(1)原式;(2)原式.【点睛】本题考查分式的计算,掌握各运算法则及通分、约分是解题的关键.21、(1);(2)x1=0,x2=1.【解析】

(1)先把化简,然后合并即可;(2)利用因式分解法解方程.【详解】(1)原式=2﹣=;(2)x(x﹣1)=0,x=0或x﹣1=0,所以x1=0,x2=1.【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).22、【解析】

(1)如图1中,作DM⊥x轴于M.利用全等三角形的性质求出点D坐标,点C坐标,得到k1,k2的值,设平移后点D坐标为(m,),则E(m−2,),由题意:(m−2)•=3,解方程即可;(2)设平移后点D坐标为(a,),则C(a−2,+1),当点C在y=上时,(a−2)(+1)=6,解得a=1+或1−(舍弃),观察图象可得结论;【详解】解:(1)如图1中,作DM⊥x轴于M.∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∵∠AOB=∠AMD=90°,∴∠OAB+∠OBA=90°,∠OAB+∠DAM=90°,∴∠ABO=∠DAM,∴△OAB≌△MDA(AAS),∴AM=OB=1,DM=OA=2,∴D(3,2),∵点D在上,∴k2=6,即,同法可得C(1,3),∵点C在上,∴k1=3,即,设平移后点D坐标为(m,),则E(m−2,),由题意:(m−2)•=3,解得m=4,∴D(4,);(2)设平移后点D坐标为(a,),则C(a−2,+1),当点C在y=上时,(a−2)(+1)=6,解得a=1+或1−(舍弃),观察图象可知:矩形的边CE与,的图象均无公共点,则a的取值范围为:4<a<1+.【点睛】本题考查反比例函数综合题、正方形的性质、全等三角形的判定和性质、待定系数法等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.23、,【解析】先利用分式的性质和计算法则化简,再通过求出a、b的值,最后代入求值即可.解:原式∵∴,∴原式24、2【解析】

如图,取CD的中点N,连接PN,PB,BN.首先证明PQ=PN,PB=PG,推出PQ+PG=PN+PB≥BN,求出BN即可解决问题.【详解】解:如图,取CD的中点N,连接PN,PB,BN.由翻折的性质以及对称性可知;PQ=PN,PG=PC,HG=CD=4,∵QH=QG,∴QG=2,在Rt△BCN中,BN=22∵∠CBG=90°,PC=PG,∴PB=PG=PC,∴PQ+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论