版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年广东省佛山市鳌云中学高二数学文知识点试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知椭圆()中,成等比数列,则椭圆的离心率为(
)
A.
B.
C.
D.
参考答案:D2.直线的倾斜角是
(
)A
B
C
D参考答案:A3.实验测得五组(x,y)的值是(1,2)(2,4)(3,4)(4,7)(5,8),若线性回归方程为=0.7x+,则的值是()A.1.4 B.1.9 C.2.2 D.2.9参考答案:D【考点】线性回归方程.【分析】根据五组(x,y)的值计算、,利用线性回归方程过样本中心点求出的值.【解答】解:根据五组(x,y)的值,计算=×(1+2+3+4+5)=3,=×(2+4+4+7+8)=5,且线性回归方程=0.7x+过样本中心点,则=﹣0.7=5﹣0.7×3=2.9.故选:D.【点评】本题考查了平均数与线性回归方程过样本中心点的应用问题,是基础题目.4.关于空间两条直线、与平面,下列命题正确的是(
)A.若,则 B.若,则C.,则 D.若则参考答案:D5.为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:收入x(万元)8.28.610.011.311.9支出y(万元)6.27.58.08.59.8根据上表可得回归直线方程,其中,.据此估计,该社区一户年收入为15万元家庭的年支出为(
)A.11.4万元
B.11.8万元
C.12.0万元
D.12.2万元参考答案:B6.若集合,则A∪B=()A. B. C. D.参考答案:B【分析】利用并集定义直接求解.【详解】∵集合,∴.本题正确选项:【点睛】本题考查并集的求法,考查并集定义、不等式性质等基础知识,考查运算求解能力,是基础题.7.两圆和的位置关系是(
)A.相离
B.相交
C.内切
D.外切参考答案:B略8.垂直于同一平面的两条直线一定()A.平行B.相交C.异面D.以上都有可能参考答案:A略9.设a+b<0,且b>0,则
A.b2>a2>abB.a2<b2<-abC.a2<-ab<b2D.a2>-ab>b2
参考答案:解析:注意到条件简明与选项的复杂,考虑运用特值法:
取a=-2,b=1,则a2=4,b2=1,ab=-2,-ab=2由此否定A,B,C,应选D
10.已知为抛物线的焦点,为此抛物线上的点,则的最小值为(
)A.4
B.5
C.6
D.7参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.已知,则曲线在M的作用下得到的新曲线方程_________.参考答案:【分析】设对应点,根据题意,得到,求解即可【详解】设原曲线上任一点在作用下对应点,则即,解得,代入得,则曲线在的作用下得到的新曲线方程为答案:【点睛】本题考查变换前后坐标之间的关系,属于基础题12.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________.参考答案:13.某班有50名学生,一次考试的成绩ξ(ξ∈N)服从正态分布N.已知P(90≤ξ≤100)=0.3,估计该班数学成绩在110分以上的人数为.参考答案:10【考点】正态分布曲线的特点及曲线所表示的意义.【专题】计算题.【分析】根据考试的成绩ξ服从正态分布N.得到考试的成绩ξ关于ξ=100对称,根据P(90≤ξ≤100)=0.3,得到P=0.3,从而得到P=0.2,根据频率乘以样本容量得到这个分数段上的人数.【解答】解:∵考试的成绩ξ服从正态分布N.∴考试的成绩ξ关于ξ=100对称,∵P(90≤ξ≤100)=0.3,∴P=0.3,∴P=0.2,∴该班数学成绩在110分以上的人数为0.2×50=10故答案为:10.【点评】本题考查正态曲线的特点及曲线所表示的意义,是一个基础题,解题的关键是考试的成绩ξ关于ξ=100对称,利用对称写出要用的一段分数的频数,题目得解.14.在数列中,=____________.参考答案:3115.在平面直角坐标系xOy中,点A(0,3),直线l:y=2x﹣4,设圆C的半径为1,圆心在l上.若圆C上存在点M,使|MA|=2|MO|,则圆心C的横坐标a的取值范围为.参考答案:[0,]【考点】直线与圆相交的性质.【分析】设M(x,y),由MA=2MO,利用两点间的距离公式列出关系式,整理后得到点M的轨迹为以(0,﹣1)为圆心,2为半径的圆,可记为圆D,由M在圆C上,得到圆C与圆D相交或相切,根据两圆的半径长,得出两圆心间的距离范围,利用两点间的距离公式列出不等式,求出不等式的解集,即可得到a的范围.【解答】解:设点M(x,y),由MA=2MO,知:=2,化简得:x2+(y+1)2=4,∴点M的轨迹为以(0,﹣1)为圆心,2为半径的圆,可记为圆D,又∵点M在圆C上,∴圆C与圆D的关系为相交或相切,∴1≤|CD|≤3,其中|CD|=,∴1≤≤3,化简可得0≤a≤,故答案为:[0,].【点评】本题主要考查圆与圆的位置关系的判定,两点间的距离公式,圆和圆的位置关系的判定,属于基础题.16.已知一个三棱锥的三视图如图所示,则该三棱锥的体积为
.外接球半径为
.参考答案:;。【考点】球内接多面体.【专题】计算题;转化思想;综合法;空间位置关系与距离.【分析】几何体是一个底面是顶角为120°且底边长是2,在等腰三角形的顶点处有一条垂直于底面的侧棱,侧棱长是2,建立适当的坐标系,写出各个点的坐标和设出球心的坐标,根据各个点到球心的距离相等,点的球心的坐标,可得球的半径,做出体积.【解答】解:由三视图知:几何体为三棱锥,且一条侧棱与底面垂直,高为2,三棱锥的底面为等腰三角形,且三角形的底边长为2,底边上的高为1,∴几何体的体积V=××2×1×2=.以D为原点,DB为x轴,DA为y轴,建立空间直角坐标系,则D(0,0,0),A(0,0,2),B(2,0,0),C(﹣1,,0)∵(x﹣2)2+y2+z2=x2+y2+z2,①x2+y2+(z﹣2)2=x2+y2+z2,②(x+1)2+(y﹣)2+z2=x2+y2+z2,③∴x=1,y=,z=1,∴球心的坐标是(1,,1),∴球的半径是,故答案为:,.【点评】本题考查由三视图求几何体的体积,考查由三视图还原几何体,考查三棱锥与外接球之间的关系,考查利用空间向量解决立体几何问题.17.右边茎叶图表示的是甲、乙两人在次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率为
。参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)由下列各个不等式:
你能得到一个怎样的一般不等式?并加以证明.参考答案:根据给出的几个不等式可以猜想第个不等式,即一般不等式为:
4分用数学归纳法证明如下:(1)当n=1时,猜想成立.
5分(2)假设当时猜想成立,即6分则当时,
10分
这就说明猜想也成立,由(1)(2)知,猜想对一切都成立.------12分19.在直角坐标系xOy中,曲线C1的参数方程为(为参数),以原点O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为.(1)求曲线C1的普通方程和C2的直角坐标方程;(2)已知曲线C3的极坐标方程为,点A是曲线C3与C1的交点,点B是曲线C3与C2的交点,A,B均异于原点O,且,求的值.参考答案:(1);(2).【分析】(1)根据曲线的参数方程,消去参数,即可得到的普通方程;由两边同时乘以,即可得到,进而可得的直角坐标方程;(2)根据的直角坐标方程先得到其极坐标方程,将分别代入和的极坐标方程,求出和,再由,即可求出结果.【详解】解:(1)由消去参数,得的普通方程为.由,得,又,,所以的直角坐标方程为.(2)由(1)知曲线的普通方程为,所以其极坐标方程为.设点,的极坐标分别为,,则,,所以,所以,即,解得,又,所以.【点睛】本题主要考查极坐标方程与直角坐标方程的互化、以及参数方程与普通方程的互化,熟记公式即可,属于常考题型.20.如图,四棱锥P-ABCD的底面是矩形,侧面PAD⊥底面ABCD,在DPAD中+=2,且AD=2PE(Ⅰ)求证:平面PAB⊥平面PCD;(Ⅱ)如果AB=BC,=60o,求DC与平面PBE的正弦值
参考答案:略21.(本小题满分12分)(普通班做)过抛物线y2=4x的焦点F作倾斜角为的直线,它与抛物线交于A、B两点,求这两点间的距离.参考答案:(普通班做)解:抛物线y2=4x的焦点为F(1,0),22.(本题满分12分)已知不等式的解集为(1)求的值;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 腹泻的中医辩证分型及治疗
- 课件开头动画教学课件
- 精准开采课件教学课件
- 胃肠道术后饮食护理
- 虫咬伤课件教学课件
- 2.3.1物质的量+课件高一上学期化学人教版(2019)必修第一册
- 犬咬伤应急演练方案
- 高血压预防:控制血压的方法
- 解决方案总监年终述职
- 舞者表演规范
- 江苏省苏州市苏州园区五校联考2024-2025学年上学期八年级数学期中试题
- 颅骨缺损护理
- 2023年齐齐哈尔富裕县招聘警务辅助人员笔试真题
- 2024-2030年瓷砖行业市场现状供需分析及投资评估规划分析研究报告
- 宾馆改造工程冬季施工方案
- 2024年餐厅服务员(高级)职业鉴定理论考试题库(含答案)
- 高一学生考试备战-考试辅导老师
- GB/T 16915.2-2024家用和类似用途固定式电气装置的开关第2-1部分:电子控制装置的特殊要求
- 第六单元(单元测试)-2024-2025学年统编版语文六年级上册
- 2024年贵州铜仁市公开引进千名英才(事业单位77名)历年高频难、易错点500题模拟试题附带答案详解
- 事业单位招聘(公共基础知识)历年真题汇编1
评论
0/150
提交评论