版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省台州市平桥二中高二数学文联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.“函数在一点的导数值为0”是“函数在这点取极值”的(
)A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件参考答案:B2.已知,则函数在点处的切线与坐标轴围成的三角形的面积为A. B. C.1 D.2参考答案:A3.设,则关于的方程在上有两个零点的概率为(
)A.
B.
C.
D.
参考答案:B4.椭圆的左、右焦点分别为,点P在椭圆上,如果线段的中点在轴上,那么是的(
)A.7倍
B.5倍
C.4倍
D.3倍参考答案:A略5.复数的虚部是(
)A、2i
B、C、iD、参考答案:B6.已知①正方形的对角线相等;②矩形的对角线相等;③正方形是矩形.根据”三段论”推理出一个结论。则这个结论是(
)A.正方形的对角线相等
B.矩形的对角线相等
C.正方形是矩形
D.其他参考答案:A略7.《庄子?天下篇》中记述了一个著名命题:“一尺之锤,日取其半,万世不竭”.反映这个命题本质的式子是()A.1+++…+=2﹣ B.++…+<1C.+…+=1
D.++…+>1参考答案:B【考点】归纳推理.【分析】根据已知可得每次截取的长度构造一个以为首项,以为公比的等比数列,但累加和小于1,进而得到答案.【解答】解:根据已知可得每次截取的长度构造一个以为首项,以为公比的等比数列,∵++…+=1﹣<1,故反映这个命题本质的式子是++…+<1,故选:B.【点评】本题考查的知识点是等比数列的前n项和公式,数列的应用,难度中档.8.若对任意实数x,有,则(
)A.121
B.122
C.242
D.244参考答案:B,且,.故选:B.
9.下列四个结论:⑴两条直线和同一个平面平行,则这两条直线平行。⑵两条直线没有公共点,则这两条直线平行。⑶两条直线都和第三条直线垂直,则这两条直线平行。w.w.w.k.s.5.u.c.o.m
⑷一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行。其中正确的个数为(
)A、0
B、1
C、2
D、3参考答案:A10.复数z满足z=(i为虚数单位),则复数z的共轭复数=()A.1+3i B.1﹣3i C.3﹣i D.3+i参考答案:B【考点】A2:复数的基本概念.【分析】利用复数代数形式的乘除运算化简,再由共轭复数的概念得答案.【解答】解:∵z==,∴.故选:B.二、填空题:本大题共7小题,每小题4分,共28分11.若正数a,b满足ab=a+b+3,则a+b的取值范围是
参考答案:[6,+∞)12.《广告法》对插播广告的时间有一定的规定,某人对某台的电视节目做了长期的统计后得出结论,他任意时间打开电视机看该台节目,看不到广告的概率为,那么该台每小时约有________分钟的广告.参考答案:613.已知P,Q分别为直线和上的动点,则PQ的最小值为
.参考答案:由于两条直线平行,所以两点的最小值为两条平行线间的距离.
14.等差数列{an}中,Sn是它的前n项和,且S6<S7,S7>S8,则①此数列的公差d<0②S9<S6③a7是各项中最大的一项
④S7一定是Sn中的最大值.其中正确的是(填序号).参考答案:①②④【考点】等差数列的性质.【分析】由已知可得a7>0,a8<0;①d=a8﹣a7<0,②S9﹣S6=a7+a8+a9=3a8<0,③由于d<0,所以a1最大,④结合d<0,a7>0,a8<0,可得S7最大;可得答案.【解答】解:由s6<s7,S7>S8可得S7﹣S6=a7>0,S8﹣S7=a8<0所以a8﹣a7=d<0①正确②S9﹣S6=a7+a8+a9=3a8<0,所以②正确③由于d<0,所以a1最大③错误④由于a7>0,a8<0,s7最大,所以④正确故答案为:①②④【点评】本题主要考查了等差数列的性质,通过对等差数列性质的研究,培养学生探索、发现的求知精神,养成探索、总结的良好习惯.15.是的导函数,则的值是 参考答案:116.已知函数f(x)=lnx,g(x)=x2﹣2x,当x>2时k(x﹣2)<xf(x)+2g'(x)+3恒成立,则整数k最大值为
.参考答案:5【考点】利用导数求闭区间上函数的最值.【分析】k(x﹣2)<xf(x)+2g′(x)+3恒成立,等价于k(x﹣2)<xlnx+2(x﹣2)+3对一切x∈(2,+∞)恒成立,分离参数,从而可转化为求函数的最小值问题,利用导数即可求得,即可求实数a的取值范围.【解答】解:因为当x>2时,不等式k(x﹣2)<xf(x)+2g′(x)+3恒成立,即k(x﹣2)<xlnx+2(x﹣2)+3对一切x∈(2,+∞)恒成立,亦即k<=+2对一切x∈(2,+∞)恒成立,所以不等式转化为k<+2对任意x>2恒成立.设p(x)=+2,则p′(x)=,令r(x)=x﹣2lnx﹣5(x>2),则r′(x)=1﹣=>0,所以r(x)在(2,+∞)上单调递增.因为r(9)=4(1﹣ln3)<0,r(10)=5﹣2ln10>0,所以r(x)=0在(2,+∞)上存在唯一实根x0,且满足x0∈(9,10),当2<x<x0时,r(x)<0,即p′(x)<0;当x>x0时,r(x)>0,即p′(x)>0.所以函数p(x)在(2,x0)上单调递减,在(x0,+∞)上单调递增,又r(x0)=x0﹣2lnx0﹣5=0,所以2lnx0=x0﹣5.所以[p(x)]min=p(x0)=+2=+2∈(5,6),所以k<[p(x)]min∈(5,6),故整数k的最大值是5.故答案为:5.17.在△ABC中,角A、B、C的对边分别为a,b,c,若a=1,b=,c=,则∠B=
参考答案:
(150°)三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,在直三棱柱中,、分别是、的中点,点在上,.求证:(1)∥平面;
(2)平面平面.参考答案:略19.如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x﹣4.设圆C的半径为1,圆心在l上.(1)若圆心C也在直线y=x﹣1上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.参考答案:【考点】圆的切线方程;点到直线的距离公式;圆与圆的位置关系及其判定.【分析】(1)联立直线l与直线y=x﹣1解析式,求出方程组的解得到圆心C坐标,根据A坐标设出切线的方程,由圆心到切线的距离等于圆的半径,列出关于k的方程,求出方程的解得到k的值,确定出切线方程即可;(2)设M(x,y),由MA=2MO,利用两点间的距离公式列出关系式,整理后得到点M的轨迹为以(0,﹣1)为圆心,2为半径的圆,可记为圆D,由M在圆C上,得到圆C与圆D相交或相切,根据两圆的半径长,得出两圆心间的距离范围,利用两点间的距离公式列出不等式,求出不等式的解集,即可得到a的范围.【解答】解:(1)联立得:,解得:,∴圆心C(3,2).若k不存在,不合题意;若k存在,设切线为:y=kx+3,可得圆心到切线的距离d=r,即=1,解得:k=0或k=﹣,则所求切线为y=3或y=﹣x+3;(2)设点M(x,y),由MA=2MO,知:=2,化简得:x2+(y+1)2=4,∴点M的轨迹为以(0,﹣1)为圆心,2为半径的圆,可记为圆D,又∵点M在圆C上,C(a,2a﹣4),∴圆C与圆D的关系为相交或相切,∴1≤|CD|≤3,其中|CD|=,∴1≤≤3,解得:0≤a≤.20.(本小题满分9分)在数列中,,
.(Ⅰ)求,的值;(Ⅱ)证明:数列是等比数列,并求的通项公式;(Ⅲ)求数列的前项和.参考答案:(Ⅰ)解:因为,
,所以,……………………2分
.…………………4分(Ⅱ)证明:因为,又,所以数列是首项为,公比为的等比数列.……5分
所以,
即,所以的通项公式为
.…………6分(Ⅲ)解:因为的通项公式为
,所以当是正奇数时,.……………7分当是正偶数时,.………………8分综上,
…………………9分21.已知直线l经过点P(1,1),倾斜角α=,(1)写出直线l的参数方程.(2)设l与圆x2+y2=4相交于点A、B,求点P到A、B两点的距离之积.参考答案:【考点】QJ:直线的参数方程.【分析】对第(1)问,由过点(x0,y0),且倾斜角为α的直线的参数方程可得l的参数方程;对第(2)问,根据l的参数方程,可设A,B,再将l的参数方程代入圆的方程中,得到一个关于t的一元二次方程,由韦达定理可得点P到A、B两点的距离之积.【解答】解:(1)因为过点(x0,y0),且倾斜角为α的直线的参数方程,由题意,将x0=1,y0=1,α=代入上式得直线l的参数方程为(t为参数).(2)因为A,B都在直线l上,故可设它们对应的参数分别为t1,t2,则点A,B的坐标分别为A,B,将直线l的参数方程代入圆的方程x2+y2=4中,整理得,则t1,t2是此方程的两根,由韦达定理得t1t2=﹣2,所以|PA|?|PB|=|t1t2|=2.即点P到A、B两点的距离之积为2.22.如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,BC⊥PB,△BCD为等边三角形,PA=BD=,AB=AD,E为PC的中点.(1)求AB;(2)求平面BDE与平面ABP所成二面角的正弦值.参考答案:【考点】MT:二面角的平面角及求法;MK:点、线、面间的距离计算.【分析】(1)由题意可得BC⊥平面PAB,进一步得到BC⊥AB,再由△BCD为等边三角形,且AB=AD,可得△ABC≌△ADC,由已知求解直角三角形可得AB;(2)由(1)知,AC⊥BD,设AC∩BD=O,分别以OC、OD所在直线为x、y轴建立空间直角坐标系.求出平面BDE与平面ABP的一个法向量,再求两个法向量夹角的余弦值,可得平面BDE与平面ABP所成二面角的正弦值.【解答】解:(1)连接AC,∵PA⊥底面ABCD,BC?平面ABCD,∴PA⊥BC,又∵BC⊥PB,PB∩PA=P,∴BC⊥平面PAB,又AB?平面PAB,∴B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论