版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省合肥市郭河镇三塘中学2022年高二数学文下学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.椭圆的左、右焦点为、,一直线过交椭圆于、,则的周长为(
)A、
B、
C、
D、参考答案:C略2.ac>bc是的-------------条件
(
)A
充分不必要
B
必要不充分
C
充要
D
既不充分也不必要参考答案:C3.在空间中,两不同直线a、b,两不同平面、,下列命题为真命题的是()A.若,则 B.若,则C.若,则 D.若,则参考答案:D4.设是和的等比中项,则的最大值为(
)
A、1
B、2
C、3
D、4参考答案:B5.命题“若α=,则tanα=”的逆否命题是(
)A.若α≠,则tanα≠ B.若α=,则tanα≠C.若tanα≠,则α≠ D.若tanα≠,则α=参考答案:C【考点】四种命题间的逆否关系.【专题】综合题;转化思想;综合法;简易逻辑.【分析】根据命题“若p,则q”的逆否命题是“若¬q,则¬p”,可写出答案.【解答】解:命题“若α=,则tanα=”的逆否命题是“若tanα≠,则α≠”.故选:C.【点评】基础题,掌握逆否命题定义即可得出答案.6.已知数列,,,且,则数列的第100项为(
)
A.
B.
C.
D.参考答案:B7.如右图,为正方体,棱长为2下面结论中正确的结论是________.(把你认为正确的结论都填上,填序号)①∥平面;
②⊥平面;③过点与异面直线AD和成90°角的直线有2条;④三棱锥的体积.
参考答案:①②④8.圆柱形容器内盛有高度为的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如右图所示),则球的半径是A.2
B.3
C.4
D.参考答案:A略9.A是圆上固定的一点,在圆上其他位置任取一点A′,连接AA′如右图,它是一条弦,它的长度大于等于半径长的概率为()
A.
B.
C.
D.参考答案:B略10.若实数满足,则的最小值为(
)A.1 B. C.2 D.4参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.设F1,F2分别是椭圆的左、右焦点,点P在椭圆C上,若线段PF1的中点在y轴上,∠PF1F2=30°,F1F2=2,则椭圆的标准方程为.参考答案:【考点】K4:椭圆的简单性质;K3:椭圆的标准方程.【分析】判断三角形PF1F2是直角三角形,依题意可求得|PF1|与|PF2|,求出a,然后求解b,即可求解椭圆方程.【解答】解:F1,F2分别是椭圆的左、右焦点,点P在椭圆C上,若线段PF1的中点在y轴上,可得PF2⊥F1F2,∠PF1F2=30°,∴|F1F2|=2,|PF1|=,|PF2|=又|PF1|+|PF2|=2a=2,a=,|F1F2|=2c=2,c=1,∴b=.所求椭圆方程为:.故答案为:.12.
若命题的否命题为,命题的逆命题为,则是的逆命题的
命题.参考答案:否略13.已知直二面角α-l-β,点A∈α,AC⊥l,C为垂足.点B∈β,BD⊥l,D为垂足.若AB=2,AC=BD=1,则D到平面ABC的距离等于________.参考答案:14.如图所示,程序框图(算法流程图)的输出值_____________.参考答案:715.已知函数在R上的图象是连续不断的一条曲线,并且关于原点对称,其导函数为,当时,有不等式成立,若对,不等式恒成立,则正整数a的最大值为_______.参考答案:2【分析】令先判断函数g(x)的奇偶性和单调性,得到在R上恒成立,再利用导数分析解答即得解.【详解】因为当时,有不等式成立,所以,令所以函数g(x)在(0,+∞)上单调递增,由题得所以函数g(x)是奇函数,所以函数在R上单调递增.因为对,不等式恒成立,所以,因为a>0,所以当x≤0时,显然成立.当x>0时,,所以,所以函数h(x)在(0,1)单调递减,在(1,+∞)单调递增.所以,所以a<e,所以正整数a的最大值为2.故答案为:2【点睛】本题主要考查函数的奇偶性及其应用,考查函数单调性的判断及其应用,考查利用导数研究不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.属于中档题.16.如图,PA⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,AE⊥PB,AF⊥PC,给出下列结论:
①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确结论的序号是________参考答案:略17.已知复数z=(其中i为虚数单位),若z为纯虚数,则实数a=.参考答案:利用复数代数形式的乘除运算化简,再由实部为0且虚部不为0列式求解.解:z===,∵z为纯虚数,∴2a﹣1=0,解得a=,故答案为:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知圆.(1)若圆的切线在轴和轴上的截距相等,求此切线的方程;(2)从圆外一点向该圆引一条切线,切点为,为坐标原点,且有,求使得取得最小值的点的坐标.参考答案:解(1)将圆C整理得(x+1)2+(y-2)2=2.①当切线在两坐标轴上的截距为零时,设切线方程为y=kx,∴圆心到切线的距离为=,即k2-4k-2=0,解得k=2±.∴y=(2±)x;略19.已知圆C经过P(4,-2),Q(-1,3)两点,且圆心在x轴上。(1)求直线PQ的方程;(2)圆C的方程;(3)若直线l∥PQ,且l与圆C交于点A,B,且以线段AB为直径的圆经过坐标原点,求直线l的方程。参考答案:(1)直线PQ的方程为x+y-2=0。(2)圆C的方程为(x-1)2+y2=13。(3)设直线l的方程为y=-x+m,A(x1,m-x1),B(x2,m-x2),由题意可知OA⊥OB,即·=0,所以x1x2+(m-x1)(m-x2)=0,化简得2x1x2-m(x1+x2)+m2=0。(*)由得2x2-2(m+1)x+m2-12=0,所以x1+x2=m+1,x1x2=。代入(*)式,得m2-12-m·(m+1)+m2=0,所以m=4或m=-3,经检验都满足判别式>0,所以直线l的方程为x+y-4=0或x+y+3=0。20.如图1-2,直线l:y=x+b与抛物线C:x2=4y相切于点A.(1)求实数b的值;(2)求以点A为圆心,且与抛物线C的准线相切的圆的方程.
图1-2参考答案:(1)由得x2-4x-4b=0.(*)因为直线l与抛物线C相切,所以Δ=(-4)2-4×(-4b)=0.解得b=-1.(2)由(1)可知b=-1,故方程(*)即为x2-4x+4=0.解得x=2,代入x2=4y,得y=1,故点A(2,1).因为圆A与抛物线C的准线相切,所以圆A的半径r等于圆心A到抛物线的准线y=-1的距离,即r=|1-(-1)|=2.所以圆A的方程为(x-2)2+(y-1)2=4.21.(14分)已知函数.(1)数列求数列的通项公式;(2)已知数列,求数列的通项公式;(3)设的前n项和为Sn,若不等式对所有的正整数n恒成立,求的取值范围.参考答案:(1),………1分
…………4分(2)由已知得,……1分∴又所以的公比为2的等比数列,∴.………………8分
(3),
上是增函数
又不等式对所有的正整数n恒成立,故的取值范围是……14分22.已知圆C的参数方程为(θ为参数),若P是圆C与x轴的交点,以原点O为极点,x轴的正半轴为极轴建立极坐标系,设过点P的圆C的切线为l(Ⅰ)求直线l的极坐标方程(Ⅱ)求圆C上到直线ρ(cosθ+sinθ)+6=0的距离最大的点的直角坐标.参考答案:【考点】QH:参数方程化成普通方程;Q4:简单曲线的极坐标方程.【分析】(Ⅰ)圆C的参数方程消去参数θ,得圆C的普通方程为(x﹣1)2+(y﹣)2=4,由题设知,圆心C(1,),P(2,0),过P点的切线的倾斜角为30°,设M(ρ,θ)是过P点的圆C的切线上的任一点,由正弦定理得,由此能求出直线l的极坐标方程.(Ⅱ)直线的直角坐标方程为x+y+6=0,设圆上的点M(1+2cosθ,),求出点M到直线的距离d=,当θ=时,点M到直线的距离取最大值,由此能求出圆C上到直线ρ(cosθ+sinθ)+6=0的距离最大的点的直角坐标.【解答】解:(Ⅰ)∵圆C的参数方程为(θ为参数),∴圆C的参数方程消去参数θ,得圆C的普通方程为(x﹣1)2+(y﹣)2=4,∵P是圆C与x轴的交点,以原点O为极点,x轴的正半轴为极轴建立极坐标系,设过点P的圆C的切线为l由题设知,圆心C(1,),P(2,0),∠CPO=60°,故过P点的切线的倾斜角为30°,设M(ρ,θ)是过P点的圆C的切线上的任一点,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 44774-2024汽车信息安全应急响应管理规范
- 2024年度桥梁拆除工程承包合同
- 2024年度知识产权许可合同许可项目与许可费用
- 2024年度电商平台物流配送合同
- 2024年度智能家居产品买卖及安装合同2篇
- 《铁路知识学习材料》课件
- 2024年度技术开发合作合同:科技公司与研发团队共同开展新技术研究的协议
- 2024年度手机销售合同市场推广及售后服务
- 工业网络控制技术 课件 项目3 简单CPU通信应用
- 2024年度环保科技公司污染治理合同3篇
- 复旦大学数学物理方法讲义
- 新人教部编版六年级上册语文 第六单元重点习题练习复习课件
- 电动吊篮计算
- 建设工程项目部管理人员考勤签到表
- 绘本课件小兔子的月亮
- 高中音乐 鉴赏 第五单元《诗乐相彰》第九节 独唱曲 课件
- 四川省大渡河瀑布沟水电站工程区
- 采煤机司机安全培训
- 24.作用于消化系统的药物——山东大学药理学英文课件
- 《平面设计综合训练》课程标准
- 西门子博途软件工程师培训(内部工程师培训)
评论
0/150
提交评论