2024年初中升学考试真题模拟卷浙江省台州市中考数学试卷_第1页
2024年初中升学考试真题模拟卷浙江省台州市中考数学试卷_第2页
2024年初中升学考试真题模拟卷浙江省台州市中考数学试卷_第3页
2024年初中升学考试真题模拟卷浙江省台州市中考数学试卷_第4页
2024年初中升学考试真题模拟卷浙江省台州市中考数学试卷_第5页
已阅读5页,还剩28页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第1页(共1页)2023年浙江省台州市中考数学试卷一、选择题(本题有10小题,每小题4分,共40分,请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.(4分)(2023•台州)下列各数中,最小的是()A.2 B.1 C.﹣1 D.﹣22.(4分)(2023•台州)如图是由5个相同的正方体搭成的立体图形,其主视图是()A. B. C. D.3.(4分)(2023•台州)下列无理数中,大小在3与4之间的是()A.7 B.22 C.13 D.174.(4分)(2023•台州)下列运算正确的是()A.2(a﹣1)=2a﹣2 B.(a+b)2=a2+b2 C.3a+2a=5a2 D.(ab)2=ab25.(4分)(2023•台州)不等式x+1≥2的解集在数轴上表示为()A. B. C. D.6.(4分)(2023•台州)如图是中国象棋棋盘的一部分,建立如图所示的平面直角坐标系,已知“車”所在位置的坐标为(﹣2,2),则“炮”所在位置的坐标为()A.(3,1) B.(1,3) C.(4,1) D.(3,2)7.(4分)(2023•台州)以下调查中,适合全面调查的是()A.了解全国中学生的视力情况 B.检测“神舟十六号”飞船的零部件 C.检测台州的城市空气质量 D.调查某池塘中现有鱼的数量8.(4分)(2023•台州)如图,⊙O的圆心O与正方形的中心重合,已知⊙O的半径和正方形的边长都为4,则圆上任意一点到正方形边上任意一点距离的最小值为()A.2 B.2 C.4+22 D.9.(4分)(2023•台州)如图,锐角三角形ABC中,AB=AC,点D,E分别在边AB,AC上,连接BE,CD.下列命题中,假命题是()A.若CD=BE,则∠DCB=∠EBC B.若∠DCB=∠EBC,则CD=BE C.若BD=CE,则∠DCB=∠EBC D.若∠DCB=∠EBC,则BD=CE10.(4分)(2023•台州)抛物线y=ax2﹣a(a≠0)与直线y=kx交于A(x1,y1),B(x2,y2)两点,若x1+x2<0,则直线y=ax+k一定经过()A.第一、二象限 B.第二、三象限 C.第三、四象限 D.第一、四象限二、填空题(本题有6小题,每小题5分,共30分)11.(5分)(2023•台州)因式分解:x2﹣3x=.12.(5分)(2023•台州)一个不透明的口袋中有5个除颜色外完全相同的小球,其中2个红球,3个白球.随机摸出一个小球,摸出红球的概率是.13.(5分)(2023•台州)用一张等宽的纸条折成如图所示的图案,若∠1=20°,则∠2的度数为.14.(5分)(2023•台州)如图,矩形ABCD中,AB=4,AD=6.在边AD上取一点E,使BE=BC,过点C作CF⊥BE,垂足为点F,则BF的长为.15.(5分)(2023•台州)3月12日植树节期间,某校环保小卫士组织植树活动.第一组植树12棵;第二组比第一组多6人,植树36棵;结果两组平均每人植树的棵数相等,则第一组有人.16.(5分)(2023•台州)如图,点C,D在线段AB上(点C在点A,D之间),分别以AD,BC为边向同侧作等边三角形ADE与等边三角形CBF,边长分别为a,b,CF与DE交于点H,延长AE,BF交于点G,AG长为c.(1)若四边形EHFG的周长与△CDH的周长相等,则a,b,c之间的等量关系为;(2)若四边形EHFG的面积与△CDH的面积相等,则a,b,c之间的等量关系为.三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.(8分)(2023•台州)计算:2218.(8分)(2023•台州)解方程组:x+y=72x−y=219.(8分)(2023•台州)教室里的投影仪投影时,可以把投影光线CA,CB及在黑板上的投影图象高度AB抽象成如图所示的△ABC,∠BAC=90°,黑板上投影图象的高度AB=120cm,CB与AB的夹角∠B=33.7°,求AC的长.(结果精确到1cm.参考数据:sin33.7°≈0.55,cos33.7°≈0.83,tan33.7°≈0.67)20.(8分)(2023•台州)科学课上,同学用自制密度计测量液体的密度.密度计悬浮在不同的液体中时,浸在液体中的高度h(单位:cm)是液体的密度ρ(单位:g/cm3)的反比例函数,当密度计悬浮在密度为1g/cm3的水中时,h=20cm.(1)求h关于ρ的函数解析式;(2)当密度计悬浮在另一种液体中时,h=25cm,求该液体的密度ρ.21.(10分)(2023•台州)如图,四边形ABCD中,AD∥BC,∠A=∠C,BD为对角线.(1)证明:四边形ABCD是平行四边形;(2)已知AD>AB,请用无刻度的直尺和圆规作菱形BEDF,顶点E,F分别在边BC,AD上(保留作图痕迹,不要求写作法).22.(12分)(2023•台州)为了改进几何教学,张老师选择A,B两班进行教学实验研究,在实验班B实施新的教学方法,在控制班A采用原来的教学方法.在实验开始前,进行一次几何能力测试(前测,总分25分),经过一段时间的教学后,再用难度、题型、总分相同的试卷进行测试(后测),得到前测和后测数据并整理成表1和表2.表1:前测数据测试分数x0<x≤55<x≤1010<x≤1515<x≤2020<x≤25控制班A289931实验班B2510821表2:后测数据测试分数x0<x≤55<x≤1010<x≤1515<x≤2020<x≤25控制班A14161262实验班B6811183(1)A,B两班的学生人数分别是多少?(2)请选择一种适当的统计量,分析比较A,B两班的后测数据.(3)通过分析前测、后测数据,请对张老师的教学实验效果进行评价.23.(12分)(2023•台州)我们可以通过中心投影的方法建立圆上的点与直线上点的对应关系,用直线上点的位置刻画圆上点的位置.如图,AB是⊙O的直径,直线l是⊙O的切线,B为切点.P,Q是圆上两点(不与点A重合,且在直径AB的同侧),分别作射线AP,AQ交直线l于点C,点D.(1)如图1,当AB=6,BP长为π时,求BC的长;(2)如图2,当AQAB=34,(3)如图3,当sin∠BAQ=64,BC=CD时,连接BP,PQ,直接写出24.(14分)(2023•台州)【问题背景】“刻漏”是我国古代的一种利用水流计时的工具.综合实践小组准备用甲、乙两个透明的竖直放置的容器和一根带节流阀(控制水的流速大小)的软管制作简易计时装置.【实验操作】综合实践小组设计了如下的实验:先在甲容器里加满水,此时水面高度为30cm,开始放水后每隔10min观察一次甲容器中的水面高度,获得的数据如表:流水时间t/min010203040水面高度h/cm(观察值)302928.12725.8任务1:分别计算表中每隔10min水面高度观察值的变化量.【建立模型】小组讨论发现:“t=0,h=30”是初始状态下的准确数据,水面高度值的变化不均匀,但可以用一次函数近似地刻画水面高度h与流水时间t的关系.任务2:利用t=0时,h=30;t=10时,h=29这两组数据求水面高度h与流水时间t的函数解析式;【反思优化】经检验,发现有两组表中观察值不满足任务2中求出的函数解析式,存在偏差,小组决定优化函数解析式,减少偏差.通过查阅资料后知道:t为表中数据时,根据解析式求出所对应的函数值,计算这些函数值与对应h的观察值之差的平方和,记为w;w越小,偏差越小.任务3:(1)计算任务2得到的函数解析式的w值;(2)请确定经过(0,30)的一次函数解析式,使得w的值最小;【设计刻度】得到优化的函数解析式后,综合实践小组决定在甲容器外壁设计刻度,通过刻度直接读取时间.任务4:请你简要写出时间刻度的设计方案.

2023年浙江省台州市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分,请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.(4分)(2023•台州)下列各数中,最小的是()A.2 B.1 C.﹣1 D.﹣2【分析】正数>0>负数,两个负数比较大小,绝对值大的反而小;据此进行判断即可.【解答】解:∵|﹣1|=1,|﹣2|=2,1<2,∴﹣1>﹣2,则2>1>﹣1>﹣2,那么最小的数为:﹣2,故选:D.【点评】本题考查有理数的大小比较,此为基础且重要知识点,必须熟练掌握.2.(4分)(2023•台州)如图是由5个相同的正方体搭成的立体图形,其主视图是()A. B. C. D.【分析】根据主视图的意义,从正面看该组合体所得到的图形进行判断即可.【解答】解:从正面看该组合体,其主视图是.故选:C.【点评】本题考查简单组合体的三视图,理解视图的意义,掌握三视图的画法是正确判断的前提.3.(4分)(2023•台州)下列无理数中,大小在3与4之间的是()A.7 B.22 C.13 D.17【分析】一个正数越大,其算术平方根越大;据此进行无理数的估算进行判断即可.【解答】解:∵4<7<8<9<13<16<17,∴4<即2<7<22<3<那么13在3和4之间,故选:C.【点评】本题考查无理数的估算,此为基础且重要知识点,必须熟练掌握.4.(4分)(2023•台州)下列运算正确的是()A.2(a﹣1)=2a﹣2 B.(a+b)2=a2+b2 C.3a+2a=5a2 D.(ab)2=ab2【分析】根据去括号法则,完全平方公式,合并同类项法则,积的乘方法则将各项计算后进行判断即可.【解答】解:A.2(a﹣1)=2a﹣2×1=2a﹣2,则A符合题意;B.(a+b)2=a2+2ab+b2,则B不符合题意;C.3a+2a=(3+2)a=5a,则C不符合题意;D.(ab)2=a2b2,则D不符合题意;故选:A.【点评】本题考查整式的运算,其相关运算法则是基础且重要知识点,必须熟练掌握.5.(4分)(2023•台州)不等式x+1≥2的解集在数轴上表示为()A. B. C. D.【分析】直接解一元一次不等式,再将解集在数轴上表示即可.【解答】解:x+1≥2,解得:x≥1,在数轴上表示,如图所示:.故选:B.【点评】此题主要考查了解一元一次不等式,正确解不等式是解题关键.6.(4分)(2023•台州)如图是中国象棋棋盘的一部分,建立如图所示的平面直角坐标系,已知“車”所在位置的坐标为(﹣2,2),则“炮”所在位置的坐标为()A.(3,1) B.(1,3) C.(4,1) D.(3,2)【分析】直接利用“車”位于点(﹣2,2),得出原点的位置,进而得出答案.【解答】解:如图所示:“炮”所在位置的坐标为:(3,1).故选:A.【点评】此题主要考查了坐标确定位置,正确得出原点的位置是解题关键.7.(4分)(2023•台州)以下调查中,适合全面调查的是()A.了解全国中学生的视力情况 B.检测“神舟十六号”飞船的零部件 C.检测台州的城市空气质量 D.调查某池塘中现有鱼的数量【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断.【解答】解:A.了解全国中学生的视力情况,适合抽样调查,故本选项不合题意;B.检测“神舟十六号”飞船的零部件,适合普查,故本选项符合题意;C.检测台州的城市空气质量,适合抽样调查,故本选项不合题意;D.调查某池塘中现有鱼的数量,适合抽样调查,故本选项不合题意.故选:B.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8.(4分)(2023•台州)如图,⊙O的圆心O与正方形的中心重合,已知⊙O的半径和正方形的边长都为4,则圆上任意一点到正方形边上任意一点距离的最小值为()A.2 B.2 C.4+22 D.【分析】如图,由三角形三边关系分析可得当O、A、B三点共线时,圆上任意一点到正方形边上任意一点距离有最小值,最小值为OB﹣AB,以此即可求解.【解答】解:如图,点B为⊙O上一点,点D为正方形上一点,连接BD,OC,OA,AB,由三角形三边关系可得,OB﹣OD<BD,OB是圆的半径,为定值,当点D在A时,取得最大值,∴当O、A、B三点共线时,圆上任意一点到正方形边上任意一点距离有最小值,最小值为OB﹣AB,由题意可得,AC=4,OB=4,∵点O为正方形的中心,∴OA⊥OC,OA=OC,∴△AOC为等腰直角三角形,∴OA=AC∴圆上任意一点到正方形边上任意一点距离的最小值为OB﹣AB=4−22故选:D.【点评】本题主要考查正方形的性质、利用三角形三边关系求最值问题,利用三角形三边关系分析得出当O、A、B三点共线时,圆上任意一点到正方形边上任意一点距离有最小值是解题关键.9.(4分)(2023•台州)如图,锐角三角形ABC中,AB=AC,点D,E分别在边AB,AC上,连接BE,CD.下列命题中,假命题是()A.若CD=BE,则∠DCB=∠EBC B.若∠DCB=∠EBC,则CD=BE C.若BD=CE,则∠DCB=∠EBC D.若∠DCB=∠EBC,则BD=CE【分析】由AB=AC,得∠ABC=∠ACB,而BC=BC,∠DCB=∠EBC,可得△DCB≌△EBC(ASA),故CD=BE,判断选项B是真命题;BD=CE,判断选项D是真命题;根据BC=BC,∠ABC=∠ACB,BD=CE,得△DCB≌△EBC(SAS),有∠DCB=∠EBC,判断选项C是真命题;不能证明CD=BE时,∠DCB=∠EBC,可判断选项A是假命题.【解答】解:∵AB=AC,∴∠ABC=∠ACB,∵BC=BC,∠DCB=∠EBC,∴△DCB≌△EBC(ASA),∴CD=BE,故选项B是真命题,不符合题意;BD=CE,故选项D是真命题,不符合题意;∵BC=BC,∠ABC=∠ACB,BD=CE,∴△DCB≌△EBC(SAS),∴∠DCB=∠EBC,故选项C是真命题,不符合题意;不能证明CD=BE时,∠DCB=∠EBC,故选项A是假命题,符合题意;故选:A.【点评】本题考查命题与定理,涉及全等三角形的判定与性质,等腰三角形性质及应用,解题的关键是掌握全等三角形判定定理.10.(4分)(2023•台州)抛物线y=ax2﹣a(a≠0)与直线y=kx交于A(x1,y1),B(x2,y2)两点,若x1+x2<0,则直线y=ax+k一定经过()A.第一、二象限 B.第二、三象限 C.第三、四象限 D.第一、四象限【分析】根据已知条件可得出ax2﹣kx﹣a=0,再利用根与系数的关系,分情况讨论即可.【解答】解:∵抛物线y=ax2﹣a(a≠0)与直线y=kx交于A(x1,y1),B(x2,y2)两点,∴kx=ax2﹣a,∴ax2﹣kx﹣a=0,∴x1∴ka当a>0,k<0时,直线y=ax+k经过第一、三、四象限,当a<0,k>0时,直线y=ax+k经过第一、二、四象限,综上,直线y=ax+k一定经过一、四象限.故选:D.【点评】本题考查了二次函数与系数的关系,解题的关键是熟练掌握根与系数的关系.二、填空题(本题有6小题,每小题5分,共30分)11.(5分)(2023•台州)因式分解:x2﹣3x=x(x﹣3).【分析】提取公因式x即可.【解答】解:原式=x•x﹣x•3=x(x﹣3),故答案为:x(x﹣3).【点评】本题考查提公因式法因式分解,此为基础且重要知识点,必须熟练掌握.12.(5分)(2023•台州)一个不透明的口袋中有5个除颜色外完全相同的小球,其中2个红球,3个白球.随机摸出一个小球,摸出红球的概率是25【分析】利用红球的个数÷球的总个数可得红球的概率.【解答】解:∵一个口袋里有5个除颜色外完全相同的小球,其中2个红球,3个白球,∴摸到红球的概率是25故答案为:25【点评】此题主要考查了概率公式,关键是掌握概率=所求情况数与总情况数之比.13.(5分)(2023•台州)用一张等宽的纸条折成如图所示的图案,若∠1=20°,则∠2的度数为140°.【分析】利用平行线的性质和各角之间的关系即可求解.【解答】解:如图,标注三角形的三个顶点A、B、C.∠2=∠BAC=180°﹣∠ABC﹣∠ACB.∵图案是由一张等宽的纸条折成的,∴AB=AC,∴∠ABC=∠ACB.又∵纸条的长边平行,∴∠ABC=∠1=20°,∴∠2=∠BAC=180°﹣2∠ABC=180°﹣2∠1=180°﹣2×20°=140°.故答案为:140°.【点评】本题比较简单,主要考查了平行线的性质的运用.14.(5分)(2023•台州)如图,矩形ABCD中,AB=4,AD=6.在边AD上取一点E,使BE=BC,过点C作CF⊥BE,垂足为点F,则BF的长为25【分析】根据矩形的性质可得出∠AEB=∠FBC,结合已知BE=BC,利用AAS证得△ABE和△FCB全等,得出FC=AB=4,再根据矩形的性质得到BC=AD=6,从而在Rt△FCB中利用勾股定理求出BF的长.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠AEB=∠FBC,∵CF⊥BE,∴∠CFB=90°,∴∠CFB=∠A,在△ABE和△FCB中,∠A=∠CFB∠AEB=∠FBC∴△ABE≌△FCB(AAS),∴FC=AB=4,∵四边形ABCD是矩形,∴BC=AD=6,在Rt△FCB中,由勾股定理得BF=B故答案为:25【点评】本题考查了矩形的性质,三角形全等的性质与判定,勾股定理,熟知矩形的对边平行且相等,四个角都是直角.15.(5分)(2023•台州)3月12日植树节期间,某校环保小卫士组织植树活动.第一组植树12棵;第二组比第一组多6人,植树36棵;结果两组平均每人植树的棵数相等,则第一组有3人.【分析】可设第一组有x人,则第二组有(x+6)人,根据两组平均每人植树的棵数相等,列出方程计算即可求解.【解答】解:设第一组有x人,则第二组有(x+6)人,依题意有:12x解得x=3,经检验,x=3是原方程的解.故第一组有3人.故答案为:3.【点评】本题考查了应用类问题,关键是根据两组平均每人植树的棵数相等找到等量关系.16.(5分)(2023•台州)如图,点C,D在线段AB上(点C在点A,D之间),分别以AD,BC为边向同侧作等边三角形ADE与等边三角形CBF,边长分别为a,b,CF与DE交于点H,延长AE,BF交于点G,AG长为c.(1)若四边形EHFG的周长与△CDH的周长相等,则a,b,c之间的等量关系为5a+5b=7c;(2)若四边形EHFG的面积与△CDH的面积相等,则a,b,c之间的等量关系为a2+b2=c2.【分析】(1)由△ADE和△CBF是等边三角形,可得△CDH和△ABG是等边三角形,DE∥BG,CF∥AG,即知EG=AG﹣AE=c﹣a,GF=BG﹣BF=c﹣b,根据四边形EHFG的周长与△CDH的周长相等,有2[(c﹣a)+(c﹣b)]=3(a+b﹣c),故5a+5b=7c;(2)由S四边形EHFG=S△ABG﹣S△BCF﹣S△ADE+S△CDH,四边形EHFG的面积与△CDH的面积相等,可得S△ABG=S△BCF+S△ADE,即34c2=34a2+34b2,从而可得a2+b【解答】解:(1)∵△ADE和△CBF是等边三角形,∴∠A=∠ADE=∠B=∠BCF=60°,∴△CDH和△ABG是等边三角形,DE∥BG,CF∥AG,∴四边形EHFG是平行四边形,AB=AG=BG=c,CH=DH=CD=AD+BC﹣AB=a+b﹣c,∴EG=AG﹣AE=c﹣a,GF=BG﹣BF=c﹣b,∵四边形EHFG的周长与△CDH的周长相等,∴2[(c﹣a)+(c﹣b)]=3(a+b﹣c),整理得:5a+5b=7c,故答案为:5a+5b=7c;(2)∵S四边形EHFG=S△ABG﹣S△BCF﹣S△ADE+S△CDH,四边形EHFG的面积与△CDH的面积相等,∴S△ABG﹣S△BCF﹣S△ADE+S△CDH=S△CDH,∴S△ABG=S△BCF+S△ADE,∵△ABG,△ADE和△CBF是等边三角形,∴34c2=34a2+∴c2=a2+b2,故答案为:a2+b2=c2.【点评】本题考查等边三角形的性质及应用,解题的关键是用含a,b,c的代数式表示相关线段的长度.三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.(8分)(2023•台州)计算:22【分析】根据有理数的乘方,绝对值的性质,算术平方根进行计算即可.【解答】解:22+|﹣3|−=4+3−=4+3﹣5=7﹣5=2.【点评】本题考查实数的运算,实数的相关运算法则是基础且重要知识点,必须熟练掌握.18.(8分)(2023•台州)解方程组:x+y=72x−y=2【分析】利用加减消元法求解即可.【解答】解:x+y=7①2x−y=2②①+②得3x=9,解得x=3,把x=3代入①,得3+y=7,解得y=4,∴方程组的解是x=3y=4【点评】本题主要考查解二元一次方程组,解答的关键是熟练掌握解二元一次方程组的方法.19.(8分)(2023•台州)教室里的投影仪投影时,可以把投影光线CA,CB及在黑板上的投影图象高度AB抽象成如图所示的△ABC,∠BAC=90°,黑板上投影图象的高度AB=120cm,CB与AB的夹角∠B=33.7°,求AC的长.(结果精确到1cm.参考数据:sin33.7°≈0.55,cos33.7°≈0.83,tan33.7°≈0.67)【分析】在Rt△ABC中,利用锐角三角函数的定义进行计算,即可解答.【解答】解:在Rt△ABC中,AB=120cm,∠BAC=90°,∠B=33.7°,∴tanB=AC∴AC=AB•tan33.7°≈120×0.67=80.4≈80(cm),∴AC的长约为80cm.【点评】本题考查了解直角三角形的应用,熟练掌握锐角三角函数的定义是解题的关键.20.(8分)(2023•台州)科学课上,同学用自制密度计测量液体的密度.密度计悬浮在不同的液体中时,浸在液体中的高度h(单位:cm)是液体的密度ρ(单位:g/cm3)的反比例函数,当密度计悬浮在密度为1g/cm3的水中时,h=20cm.(1)求h关于ρ的函数解析式;(2)当密度计悬浮在另一种液体中时,h=25cm,求该液体的密度ρ.【分析】(1)设h关于ρ的函数解析式为ℎ=kρ,把ρ=1,(2)把h=25代入ℎ=20ρ,求得【解答】解:(1)设h关于ρ的函数解析式为ℎ=k把ρ=1,h=20代入解析式,得k=1×20=20,∴h关于ρ的函数解析式为ℎ=20(2)把h=25代入ℎ=20ρ,得解得:ρ=0.8,答:该液体的密度ρ为0.8g/cm3.【点评】本题考查了反比例函数的应用,正确地求出反比例函数的解析式是解题的关键.21.(10分)(2023•台州)如图,四边形ABCD中,AD∥BC,∠A=∠C,BD为对角线.(1)证明:四边形ABCD是平行四边形;(2)已知AD>AB,请用无刻度的直尺和圆规作菱形BEDF,顶点E,F分别在边BC,AD上(保留作图痕迹,不要求写作法).【分析】(1)证明AB∥CD,可得结论;(2)桌线段BD的垂直平分线交AD与点F交BC与点E即可.【解答】(1)证明:∵AD∥BC,∴∠ADB=∠CBD,∠A=∠C,∴180°﹣(∠ADB+∠A)=180°﹣(∠CBD+∠C),即∠ABD=∠CDB,∴AB∥CD,∴四边形ABCD是平行四边形;(2)解:如图,四边形BEDF就是所求作的菱形.【点评】本题考查作图﹣复杂作图,平行四边形的判定和性质,菱形的判定等知识,解题的关键是理解题意,灵活运用所学知识解决问题.22.(12分)(2023•台州)为了改进几何教学,张老师选择A,B两班进行教学实验研究,在实验班B实施新的教学方法,在控制班A采用原来的教学方法.在实验开始前,进行一次几何能力测试(前测,总分25分),经过一段时间的教学后,再用难度、题型、总分相同的试卷进行测试(后测),得到前测和后测数据并整理成表1和表2.表1:前测数据测试分数x0<x≤55<x≤1010<x≤1515<x≤2020<x≤25控制班A289931实验班B2510821表2:后测数据测试分数x0<x≤55<x≤1010<x≤1515<x≤2020<x≤25控制班A14161262实验班B6811183(1)A,B两班的学生人数分别是多少?(2)请选择一种适当的统计量,分析比较A,B两班的后测数据.(3)通过分析前测、后测数据,请对张老师的教学实验效果进行评价.【分析】(1)将表格中A、B班各等级人数分别相加即可得出答案;(2)分别计算出A、B班级成绩的平均数,再从平均数、中位数和百分率方面求解即可;(3)计算出前测A、B班级成绩的平均数,再与后测的平均数、中位数及百分率分析求解即可.【解答】解:(1)A班的人数:28+9+9+3+1=50(人),B班的人数:25+10+8+2+1=46(人),答:A,B两班的学生人数分别是50人,46人.(2)xAxB从平均数看,B班成绩好于A班成绩.从中位数看,A班中位数在5<x≤10这一范围,B班中位数在10<x≤15这一范围,B班成绩好于A班成绩.从百分率看,A班15分以上的人数占16%,B班15分以上的人数约占46%,B班成绩好于A班成绩.(3)前测结果中:xAxB从平均数看,两班成绩较前测都有上升,但实验班提升得更明显,因此张老师新的教学方法效果较好.从中位数看,两班前测中位数均在0<x≤5这一范围,后测A班中位数在5<x≤10这一范围,B班中位数在10<x≤15这一范围,两班成绩较前测都有上升,但实验班提升得更明显,因此张老师新的教学方法效果较好.从百分率看,A班15分上的人数增加了100%,B班15分以上的人数增加了600%,两班成绩较前测都有上升,但实验班提升得更明显,因此张老师新的教学方法效果较好.【点评】本题主要考查统计量的选择,解题的关键是掌握加权平均数、中位数的定义和意义.23.(12分)(2023•台州)我们可以通过中心投影的方法建立圆上的点与直线上点的对应关系,用直线上点的位置刻画圆上点的位置.如图,AB是⊙O的直径,直线l是⊙O的切线,B为切点.P,Q是圆上两点(不与点A重合,且在直径AB的同侧),分别作射线AP,AQ交直线l于点C,点D.(1)如图1,当AB=6,BP长为π时,求BC的长;(2)如图2,当AQAB=34,(3)如图3,当sin∠BAQ=64,BC=CD时,连接BP,PQ,直接写出【分析】(1)连接OP,设∠BOP的度数为n,可得nπ×3180=π,n=60,即∠BOP=60°,故∠BAP=30°,而直线l是⊙O的切线,有∠ABC=90°,从而BC=AB(2)连接BQ,过点C作CF⊥AD于点F,求出cos∠BAQ=AQAB=34,由BP=PQ,得∠BAC=∠DAC,有CF=BC,证明∠FCD(3)连接BQ,证明△APQ∽△ADC,得PQCD=APAD①,证明△APB∽△ABC,得BPBC=APAB②,由BC=【解答】解:(1)如图,连接OP,设∠BOP的度数为n°,∵AB=6,BP长为π,∴nπ×3180=∴n=60,即∠BOP=60°,∴∠BAP=30°,∵直线l是⊙O的切线,∴∠ABC=90°,∴BC=AB3=(2)如图,连接BQ,过点C作CF⊥AD于点F,∵AB为⊙O直径,∴∠BQA=90°,∴cos∠BAQ=AQ∵BP=∴∠BAC=∠DAC,∵CF⊥AD,AB⊥BC,∴CF=BC,∵∠BAQ+∠ADB=90°,∠FCD+∠ADB=90°,∴∠FCD=∠BAQ,∴cos∠FCD=cos∠BAQ=3∴CFCD∴BCCD(3)如图,连接BQ,∵AB⊥BC,BQ⊥AD,∴∠ABQ=90°﹣∠QBD=∠ADC,∵∠ABQ=∠APQ,∴∠APQ=∠ADC,∵∠PAQ=∠DAC,∴△APQ∽△ADC,∴PQCD=∵∠ABC=90°=∠APB,∠BAC=∠PAB,∴△APB∽△ABC,∴BPBC=由BC=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论