光伏发电系统发电效率研究_第1页
光伏发电系统发电效率研究_第2页
光伏发电系统发电效率研究_第3页
光伏发电系统发电效率研究_第4页
光伏发电系统发电效率研究_第5页
已阅读5页,还剩48页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

光伏发电系统发电效率研究一、本文概述随着全球对可再生能源需求的日益增加,光伏发电系统作为其中的一种重要形式,已在全球范围内得到了广泛的应用。然而,光伏发电系统的发电效率问题一直是制约其进一步发展的关键因素之一。因此,本文旨在深入研究光伏发电系统的发电效率问题,探讨影响发电效率的关键因素,并提出相应的优化措施。本文将概述光伏发电系统的基本原理和运作方式,为读者提供必要的基础知识。随后,我们将分析影响光伏发电效率的主要因素,包括光照强度、温度、系统组件的性能等。在此基础上,我们将深入探讨如何通过改进系统设计和组件选择、优化系统运行和维护等方式来提高光伏发电系统的发电效率。本文还将对现有的光伏发电效率提升技术进行全面综述,包括新型光伏材料、最大功率点跟踪技术、系统集成优化等。我们将对这些技术的原理、优缺点和应用前景进行深入分析,以期为光伏发电系统的进一步发展提供理论支持和实践指导。我们将总结本文的主要研究成果,并展望未来的研究方向。我们希望通过本文的研究,能够为提高光伏发电系统的发电效率、推动可再生能源的广泛应用和全球能源结构的优化提供有益的参考和启示。二、光伏发电系统原理及影响因素光伏发电系统是一种利用光生伏特效应将太阳能转换为电能的装置。其基本原理是,当太阳光照射到光伏电池上时,光子会与电池内的半导体材料相互作用,导致电子从原子中逸出,形成光生电流。这个过程不需要机械运动或其他中间能量转换形式,因此光伏发电是一种清洁、高效且相对简单的能源转换方式。然而,光伏发电系统的发电效率受到多种因素的影响。光照强度是影响光伏发电效率的关键因素。光照强度越强,光伏电池产生的光生电流就越大,发电效率也相应提高。光谱分布也是影响光伏发电效率的重要因素。不同波长的光线对光伏电池的转换效率有所差异,因此,光谱分布的不同会直接影响到光伏电池的发电效率。光伏电池的温度也会影响其发电效率。一般来说,随着温度的升高,光伏电池的转换效率会降低。这是因为高温会导致半导体材料内的电子-空穴对复合速率加快,从而减少光生电流的产生。因此,在实际应用中,需要对光伏电池进行适当的散热设计,以降低其工作温度,提高发电效率。除了上述因素外,光伏电池的材料、结构、制造工艺以及系统的整体设计等因素也会对光伏发电效率产生影响。因此,在提高光伏发电效率的研究中,需要综合考虑各种因素,通过优化光伏电池的设计和制造工艺,以及改进系统的整体设计,来实现更高的发电效率。三、提高光伏发电系统发电效率的方法随着全球对可再生能源需求的不断增长,提高光伏发电系统的发电效率已成为研究的重要方向。光伏发电系统的发电效率受多种因素影响,包括设备性能、环境因素、系统设计等。因此,提高光伏发电系统发电效率的方法也多种多样。改进光伏电池技术是提升发电效率的关键。当前,研究者们正致力于研发更高效的光伏材料,如钙钛矿太阳能电池、染料敏化太阳能电池等,这些新型电池具有较高的光电转换效率和较低的成本,有望在未来替代传统的硅基太阳能电池。优化光伏系统的设计也是提高发电效率的有效手段。例如,通过合理的布局和倾角设计,可以使光伏板在不同季节和时间段都能接收到最佳的光照,从而提高系统的整体发电效率。引入智能跟踪系统,使光伏板能够实时跟踪太阳的位置,也是提高发电效率的重要途径。再者,提高光伏系统的运行和维护水平也能有效提升发电效率。定期对光伏板进行清洁和检查,及时更换损坏的部件,可以确保系统的稳定运行,避免因设备故障导致的发电效率下降。同时,利用先进的监控和数据分析技术,对光伏系统的运行状态进行实时监控和数据分析,可以及时发现并解决潜在的问题,进一步提高系统的发电效率。政策支持和市场激励也是提高光伏发电系统发电效率的重要因素。政府可以通过制定优惠政策、提供补贴等方式,鼓励企业和个人投资光伏发电项目,推动光伏发电技术的创新和应用。通过市场竞争和消费者选择,也可以推动光伏企业不断提高产品性能和服务质量,从而间接提高光伏发电系统的发电效率。提高光伏发电系统发电效率的方法多种多样,包括改进光伏电池技术、优化系统设计、提高运行和维护水平以及政策支持和市场激励等。这些方法的应用将有助于推动光伏发电技术的进一步发展,为实现全球能源转型和可持续发展做出重要贡献。四、案例分析与实证研究为了深入研究光伏发电系统的发电效率,我们选择了多个具有代表性的案例进行实证分析。这些案例涵盖了不同地理位置、气候条件、系统规模和技术配置的光伏发电系统。我们对位于华北地区的一个大型光伏发电站进行了深入研究。该发电站装机容量为100兆瓦,采用了先进的晶体硅光伏组件和高效逆变器。通过对其历史发电数据的分析,我们发现该发电站在晴朗天气下的发电效率较高,但在雾霾和阴雨天气下发电效率会受到一定影响。该发电站的运维管理也对其发电效率产生重要影响,定期的设备检查和维护能够有效减少系统故障,提高发电效率。我们还对一个位于西南地区的分布式光伏发电项目进行了分析。该项目由多个小型光伏发电系统组成,主要服务于当地居民和企业的用电需求。通过对这些系统的发电数据进行监测和分析,我们发现其发电效率受到光照强度、温度、阴影遮挡等多种因素的影响。为了提高发电效率,我们建议在该地区推广使用高效光伏组件和智能跟踪系统,以更好地适应复杂的光照条件。我们还对一个采用新型光伏材料的光伏发电系统进行了实证研究。该系统采用了柔性光伏材料和透明光伏材料,具有更高的发电效率和更好的应用场景适应性。通过对比传统光伏系统和新型光伏系统的发电数据,我们发现新型光伏系统在弱光条件下具有更高的发电效率,且能够更好地适应建筑物表面等复杂应用场景。通过以上案例分析和实证研究,我们得出了一些关于光伏发电系统发电效率的重要结论。光伏发电系统的发电效率受到多种因素的影响,包括地理位置、气候条件、系统规模、技术配置和运维管理等。针对不同应用场景和地区特点,需要选择合适的光伏组件和技术配置以提高发电效率。加强运维管理和技术创新也是提高光伏发电系统发电效率的重要途径。五、结论与展望本文对光伏发电系统的发电效率进行了深入研究,从光伏电池的基本原理、系统构成、影响因素以及优化方法等多个方面进行了详细的探讨。研究结果表明,光伏发电系统的发电效率受到多种因素的影响,包括光照强度、温度、阴影遮挡、系统失配等。为了提高光伏发电系统的发电效率,需要综合考虑这些因素,并采取相应的优化措施。在优化方法方面,本文提出了多种有效的策略,包括改善光伏电池的材料和结构、优化光伏系统的设计和安装、采用最大功率点跟踪算法等。这些优化方法能够显著提高光伏发电系统的发电效率,降低系统成本,推动光伏发电技术的广泛应用。随着全球能源危机和环境污染问题的日益严重,光伏发电作为一种清洁、可再生的能源形式,具有广阔的应用前景。未来,光伏发电技术的研究和发展将更加注重提高发电效率、降低成本、增强系统稳定性等方面。一方面,光伏电池的材料和结构研究将不断深入,新型高效光伏电池将不断涌现,为光伏发电系统提供更高的光电转换效率。另一方面,光伏发电系统的智能化和自动化水平将得到提升,通过引入先进的控制算法和智能管理系统,实现对光伏发电系统的实时监控和智能调度,进一步提高系统的发电效率和运行稳定性。随着光伏发电技术的不断成熟和普及,光伏发电系统将与储能技术、氢能技术等其他可再生能源技术相结合,形成更加完善的可再生能源体系,为人类社会的可持续发展提供有力支撑。光伏发电系统的发电效率研究具有重要的现实意义和长远价值。未来,我们需要在深入研究光伏发电技术的基础上,不断探索新的优化方法和应用模式,推动光伏发电技术的快速发展和广泛应用。参考资料:随着全球能源需求日益增长,光伏发电作为一种清洁、可再生的能源形式,正逐渐受到广泛。提高光伏发电系统的发电效率是当前研究的热点问题。本文将全面探讨光伏发电系统发电效率的研究现状,分析影响效率的关键因素,并介绍实验设计与方法,最后对实验结果进行深入讨论。光伏发电系统因其环保、低能耗等优势,在全球能源结构中占据了越来越重要的地位。然而,目前光伏发电系统仍面临发电效率低、成本高的问题。因此,针对光伏发电系统发电效率的研究具有重要意义。光伏发电系统的发电效率受多个因素影响。其中,光伏组件的性能是关键因素之一。组件的转换效率、衰减特性等都会直接影响系统的发电效率。环境因素如光照强度、光谱分布、温度等也会对发电效率产生重要影响。系统设计方面,如电池板布局、接线方式、冷却系统等也会对发电效率产生影响。为了深入探讨光伏发电系统的发电效率,我们设计了一系列实验。我们选择了市场上具有代表性的光伏组件,包括单晶硅、多晶硅和薄膜太阳能电池。接着,我们采用不同的安装方式,如固定式、跟踪式等,来研究其对发电效率的影响。同时,我们还采用了先进的测试方法,如IV测试、温度系数法等,以准确测量系统的发电效率。通过实验数据,我们发现不同类型的光伏组件在相同条件下,其发电效率存在明显差异。安装方式对发电效率也有显著影响。例如,采用跟踪式安装的电池板在相同时间内能获得更多的电能。我们还发现系统设计中的一些因素,如电池板间距、冷却系统等也对发电效率产生影响。本文通过对光伏发电系统发电效率的研究,分析了影响效率的关键因素,并探讨了实验设计与方法。通过实验数据,我们发现光伏组件性能、安装方式、系统设计等因素对发电效率具有显著影响。为了提高光伏发电系统的发电效率,建议采取以下措施:研发高性能的光伏组件:提高光伏组件的转换效率和衰减特性,是提高光伏发电系统发电效率的重要途径。优化安装方式:采用跟踪式安装等高效安装方式,以提高电池板对光能的利用率。改进系统设计:合理规划电池板的布局和接线方式,以减少能量损失。同时,设计高效的冷却系统,以降低电池板的工作温度。展望未来,我们期望在政策支持和技术创新的推动下,光伏发电系统的发电效率能得到进一步提升。随着研究的深入,我们期待在光伏发电系统的优化设计、智能管理等方面取得更多突破性成果。光伏发电系统(photovoltaicgenerationsystem),简称光伏(photovoltaic),是指利用光伏电池的光生伏特效应,将太阳辐射能直接转换成电能的发电系统。光伏,即光伏发电系统,是利用半导体材料的光伏效应,将太阳辐射能转化为电能的一种发电系统。光伏发电系统的能量来源于取之不尽、用之不竭的太阳能,是一种清洁、安全和可再生的能源。光伏发电过程不污染环境,不破坏生态。光伏发电系统分为独立光伏系统和并网光伏系统。光伏发电系统是由太阳能电池方阵、蓄电池组、充放电控制器、逆变器、交流配电柜、太阳跟踪控制系统等设备组成。海因里希・赫兹于1887年首次发现光电效应,阿尔伯特・爱因斯坦在1905年解释了这一现象。光伏(PV)系统正是利用半导体材料的光电效应,直接将光转换为电能。半导体的成分和光伏设备接收的有效太阳辐射的强度和波长都会影响光伏设备的发电量(赫兹,1887;爱因斯坦,1905)。1954年,贝尔实验室的3位研究人员研制出首个实用的“太阳能电池”。该电池可将6%的入射太阳能转换为电能(Pedin,2004)。随着研发不断取得进展,光伏装置的转换效率也随之提高。太阳能光伏发电系统按与电力系统的关系可分为两大类:独立光伏发电系统(Stand-alonePVSystem)和并网光伏发电系统(Grid-connectedPVSystem)。独立光伏发电系统由太阳能光伏阵列、蓄电池组、充电控制器、电力电子变换器(逆变器)、负载等组成。其工作原理是,太阳辐射能量经过光伏阵列首先被转换成电能,然后由电力电子变换器变换后给负载供电。同时将多余的电能经过充电控制器后以化学能的形式储存在储能装置中。这样在日照不足时,储存在电池中的能量就可经过电力电子逆变器、滤波和工频变压器升压后变成交流220V、50Hz的电能供交流负载使用。太阳能发电的特点是白天发电,而负载往往却是全天候用电,因此在独立光伏发电系统中储能元件必不可少,工程上使用的储能元件主要是蓄电池。并网光伏发电系统由光伏阵列、高频DC/DC升压电路、电力电子变换器(逆变器)和系统监控部分组成。其工作原理是,太阳辐射能量经过光伏阵列转换后,再经高频直流变换后变成高压直流电,然后经过电力电子逆变器逆变后向电网输出与电网电压相频一致的正弦交流电流。以上两种光伏发电系统的最大区别就在于,并网光伏发电系统直接与电网相连接,因而光伏阵列的电量盈余与并联电网可以实行互补,省去了独立光伏发电系统中必需的蓄电池等储能元件,不仅降低了系统成本,而且保证了系统的可靠性。同时,夏天太阳辐射强度大,光伏系统发电量多,可以对夏天电网的峰荷起到调节作用。随着近年来太阳能光伏发电的大规模应用以及太阳能电池组件价格的迅速下降,并网系统无疑将得到更为广泛的应用。典型的太阳能光伏发电系统由太阳能电池阵列(组件)、电缆、电力电子变换器(逆变器)、储能装置(蓄电池)、负载即用户等构成,如图1所示。其中,太阳能电池阵列和储能装置为电源系统,控制器和电力电子变换器为控制保护系统,负载为系统终端。用于光电转换的最小单元是太阳能电池单体。它的尺寸为4~100cm2,工作电压为45~50V,工作电流为20~25mA/cm2,因而不能单独作为电源使用。在光伏发电系统中,需要将太阳能电池单体进行串联、并联和封装,形成太阳能电池组件。它的功率可以从几瓦到几百瓦,可以单独作为电源使用。太阳能电池阵列则是将太阳能电池组件经过串联、并联后并装在支架上,它可以输出几百瓦、几千瓦甚至更大的功率,是光伏发电系统的电能产生器。太阳能电池方阵的框架应该尽量坚固,要有足够的硬度。同时重量要轻。安装太阳能电池方阵时要使用具有一定强度且有利于固定和支撑的金属支架,在沙漠、沿海、极地、高山、风口等一些地理环境比较恶劣或气候条件比较复杂的地区,太阳能电池方阵的支架要采用一些附加措施使其能够承受大风和冰雪堆积物的附加重量,避免因为自然的、人为的和一些大动物的破坏而坍塌。一般来说,太阳能电池方阵的安装形式有以下三种:安装在地面上、安装在柱上、安装在屋顶上。具体采用哪一种安装形式又要受到一些具体因素影响,诸如可利用空间大小、方阵尺寸、采光条件、风负载、视觉效果及安装难度、破坏和盗窃问题等。在上述几种安装形式中,首选的是安装在地面上,因为它具有简单易行的特点。而安装在柱子上面的难度受电池板离地面高度的影响。而安装在屋顶上的难度则由屋顶是否陡峭而定,在比较陡的屋顶上工作不仅耗时费力,而且非常危险。在安装过程中,尤其要避免对电池板电气性能造成损伤,为此太阳能电池板的表面应该覆盖,减小损伤的概率。还可以在光伏电站周围修建围墙,使动物无法靠近设备.以此保证系统安全。同时,安装的太阳能电池板应该面向中午的太阳,而不要对着指南针的方向,这一点在相关资料中都有说明。另外太阳电池板与水平面的倾角要大于10°。这样可使落在太阳能电池板上的雨水很快地滑落到地面上,从而保持电池板表面的清洁。太阳电池组件种类繁多,根据太阳能电池片的类型可分为:单晶硅组件、多晶硅组件、砷化镓组件、非晶硅薄膜电池组件等,其中晶体硅(包括单晶硅和多晶硅)太阳能电池组件约占市场的80%~90%。晶体硅的封装材料与工艺也有所不同,主要分为环氧树脂胶封、层压封装硅胶封装等。目前用得最多的是真空层压封装方式,这种封装方式适宜于大面积电池片的工业化封装。独立光伏发电系统是依靠蓄电池来储存多余的电能,因此蓄电池在独立光伏发电系统中占有重要地位。随着太阳能电池组件售价的下降,蓄电池的费用在系统总投资中所占比重将会逐渐增加。另外,在独立光伏发电系统的运行中,由于蓄电池故障而影响系统正常工作的情况更会占有很大比例。所以,在系统设计时,选择适当的蓄电池类型,确定合适的蓄电池容量,精确地实施安装、操作,精心维护,对于独立太阳能光伏发电系统的正常运行十分重要。目前光伏系统中常用的蓄电池种类很多,其中应用广泛的主要有普通铅酸蓄电池、碱性镍铬蓄电池和铅酸免维护蓄电池三种。普通铅酸蓄电池因对环境污染较大且要求有一定的维护,主要用在一些有维护能力的低档场合使用。碱性镍铬蓄电池的特点是有较好的低温、过充及过放性能,但缺点是价格较髙,一般用于较为特殊的场合。国内现阶段使用最多的蓄电池为铅酸免维护蓄电池,它的免维护特性使得其维护保养简单方便、性能可靠,同时对环境污染较少,很适合用于对性能可靠性要求很高的太阳能发电系统,如无人值守的工作站等场合。太阳能电池阵列在阳光照射下产生的是直流电,然而日常生活中的常用负载大多需要以交流电源供电,如日光灯、电视机、电冰箱、电风扇、空调等,绝大多数动力机械也是如此。因此需要一种把直流转换为交流的装置,这就是逆变器。光伏发电系统中的逆变器是一种变流电路,其作用是把太阳能电池阵列所发出的直流电转换为各种不同要求频率和电压值的交流电。逆变具体又可分为无源和有源两种,无源逆变是指直流电经过逆变将能量直接供给负载使用,有源逆变则是指直流电经过逆变向交流电源供电。直流变交流的必要性还体现在当供电系统需要升高或降低电压时,交流系统只需加一个变压器即可,而在直流系统中技术与装置就要复杂得多。因此,除特殊用户外,在光伏发电系统中都需要配备逆变器。逆变器还具有自动调压或手动调压功能,可改善光伏发电系统的供电质量。显而易见,逆变器是光伏发电系统中不可缺少的重要配套设备。2)、寿命长:晶体硅组件寿命通常在25年以上,非晶硅组件寿命通常在20年以上。3)、维护费用低:建成后只需少量工作人员,对系统进行定期检查和维护,相比较而言,常规发电站维护费用很大。4)、天然能源:能源是取之不尽、用之不竭的太阳能,无需能源费用。6)、模块化:根据需要选择系统容量,安装灵活、方便,扩容很简便。9)、分布式发电:可建设分散的光伏电站,减少对公用电网的影响及危害。10)、高海拔性:在海拔高、日照强的地区,更能增加系统的输出功率。(相比光伏发电高海拔地区,由于气压低,柴油发电机效率降低,输出功率减少。)1)、初投资费用高:由于初投资高,需进行单个系统的经济性评估及多种方案比较。如果初投资减少,常规燃料成本上升,则光伏系统将更具有竞争力。2)、日照不稳定:天气对任何太阳能系统的功率输出都有很大影响。气候或场地条件变化时,系统设计也要随之改变。3)、需储能装置(独立系统):光伏发电系统当夜晚时,没有阳光不能发电,需增加蓄电池储能设备,从而增加了系统规模、成本及维护工作量。4)、效率有待改进:从投资的有效性出发,要求高效率的使用光伏系统资源。用户须使用高效率的负载设备。5)、需技术培训:光伏系统使用了很多人们不熟悉的新技术,因此,用户在运行光伏系统前,都需要经过技术培训。除了传统思维中的太阳能电厂和分布式屋顶光伏,光伏还可以应用于多种多样的场景,比如建筑、农业、渔业、公共设施、景观建设等。这些复合和跨界模式一方面使得光伏建设项目在清洁发电的同时能够兼顾经济发展和生态保护;另一方面,这种对空间高效集约利用的模式有助于新能源开发项目获得建设所需的土地资源。在中国仲巴县,这个县城里所有的供热都是由太阳能来提供的。黑色的那部分就是太阳能集热器(Solarcollector),面积有5万平方米,就像我们平常用到的热水器那样,能够把太阳能变成热能。它收集了热以后,储存在图中那个彩色的罐子里。这个罐子可以24小时发热,供给县城的采暖。这是百分之百的太阳能,完全零碳。据《联合国防治荒漠化公约》统计,全球处于超干旱以及干旱的土地面积约为25500平方千米,占全球陆地表面的2%。而且,每年沙漠的面积还在不断扩大。土地退化中和(LandDegradationNeutrality,LDN)和退化土地生态修复一直以来都是地球面临的重要课题。荒漠化土地虽然有待修复,但也提供了大量的土地资源,因此,将荒漠化土地生态修复与光伏建设相结合将带来多方面的收益。荒漠上的太阳能面板不仅可以供电,还可以减少地面受到的日照辐射和水分蒸发量。清洗电池板时喷洒的水分,提高了土壤表层的含水量,促进了植被的生长和恢复。在荒漠上的太阳能电站能促进土壤的碳固定、植物的定植,提高生物多样性并恢复土壤活性,进而利于蓄水保土、阻风固沙、调节气候、改善生态环境等。对于土地所有者来说,在25年的光伏电站运营周期后,将获得植被覆盖率更高、土壤更健康、土地生产力更高的优质土地以及使用期间的土地租赁收益。目前,巴基斯坦、埃及等国,中国内蒙古、山西、青海、宁夏等地都有这样的“光伏+土地生态修复”的项目。以青海共和盆地的生态修复项目为例,这个850兆瓦的项目占地54平方千米,建设光伏电站后,光伏板下和板间土地植被覆盖率显著提升,植被覆盖度增加15%;光伏水泵灌溉地区的植被覆盖率也显著提升。光伏板下10厘米、20厘米、40厘米处,土壤含水量分别增加78%、43%、40%。夏季土壤有机质含量比上年增加6倍,氮含量比上年增加3倍,土壤微生物增加,进而提高了土地生产力。光伏发电降低了约120万吨碳排放,植被和土壤有机碳也形成了一定程度的碳沉积。电站场区对局地气候有明显调节作用:光伏园区内风速比园区外降低了3%;空气相对湿度比园区外高8%。对土壤温度也有调节作用。欧洲最大的能源消费来自建筑行业,消耗了约40%的能源,并排放了约36%的温室气体。目前,欧盟几乎75%的建筑物是低能效建筑,如对现有建筑物进行能源改造可以节省大量能源,有望使欧盟的总能耗降低5%~6%,并将二氧化碳排放降低5%。欧洲目前大范围推广光伏建筑一体化项目。结合建筑进行光伏建设可以减少对土地资源的消耗。欧洲各国在进行“光伏+建筑”项目建设时会首先对可用建筑面积进行估算,以便最大限度地利用建筑面积。从巴黎都会区大规模实际部署光伏的结果来看,由于遮盖了屋顶,太阳能电池板会使家庭冬季取暖的需求增加3%,但是在夏季,这种遮盖可减少12%的空调用能。列支敦士登是一个非常典型的受益于建筑光伏的国家。这个国家位于瑞士与奥地利两国之间,面积仅为5平方千米,只有38244人。列支敦士登土地狭小并且人口稀少,人均能耗高、人均用电量高、能源自给率低,但是它却是世界上第一个被允许称为“能源大国”的国家。从人均光伏的角度来看,2015年列支敦士登超过了原排名第一(人均装机容量为473瓦)的德国,以532瓦的人均装机容量被SolarSuperState协会授予“人均光伏冠军”的称号。值得注意的是,这个国家所有光伏项目都在建筑上。在列支敦士登光照资源条件下,面积为40~50平方米的现代光伏系统可大致满足四口之家的用电量,可以持续发电约25年,帮助列支敦士登居民用电实现自给自足,并能够向工业提供一部分电力。2020年5月10日,列支敦士登的本国发电功率超过了该国用电负荷,这是该国历史上首次不需要任何外部能源,完全自给自足地完成了整个国家的电力运行。虽然这是一个特殊时期的偶发事件,但是也表现出国家依靠建筑光伏实现能源独立的可能。目前该国公开的能源规划是在2030年达成人均光伏2千瓦,2050年至少到5千瓦。这些光伏依然全部规划在建筑上,建筑光伏在该国的地位进一步得到巩固。“光伏+农业”即在同一片土地同时开展支架型光伏发电与农业生产活动。全球农业用地面积约为5亿平方千米,占全球陆地面积的38%。其中约1/3为耕地,其余2/3为草地和牧场。农业用地占有大量的土地资源,这些土地是否可以作为光伏建设的可用面积,一直以来饱受争议。为此,欧洲最大的太阳能研究机构——德国弗劳恩霍夫太阳能系统研究所(FraunhoferISE)于2015年启动农光一体研究项目APV—RESOLA,测试光伏板对冬小麦、芹菜、土豆等不同作物产量的影响。对照实验表明,将光伏与土豆种植相结合,每公顷土豆增产3%,农用土地通过光伏额外产出83%的绿色电力,土地综合利用率提升86%。该成果已于2020年10月在由德国弗劳恩霍夫太阳能系统研究所主办的国际农业光伏大会AgriVoltaics上发布。“光伏+农业”这一模式,将光伏板清洁与农田灌溉相结合,能够提高水资源利用效率,光伏板也能起到减弱正午过强光照对农作物的不利影响和减少水分蒸发的作用。基于农光一体设施,可以选育适宜作物,进行合理灌溉。光伏供电的智能系统还可以保障农业生产工艺流程,实现“光伏大棚+智慧种植”,提高农业经济和质量。“光伏+农业”模式解决了光伏建设与农业生产争地的问题,并通过光伏建设中的一些干预措施在尽量确保光伏发电量的同时增加农作物的产量,实现土地复合利用。以位于宁夏黄河东岸的农光互补光伏电站为例,宁夏黄河东岸曾是荒漠化最为严重的土地之一,平均海拔为1200米,年最大降水量为273毫米,年蒸发量为2722毫米,漫天黄沙,尘土飞扬。开发公司对16万亩(约10666公顷)荒漠化的土地进行生态治理,建设农光互补电站,规划建设3GWp光伏发电,已建成并网1GWp光伏。同时开展优质有机枸杞的“种植—研发—加工—销售”绿色产业链,为当地3万贫困人口提供了就业机会。光伏组件减少了辐射强度,“光伏+农业”使得枸杞的开花季比当地同类枸杞长了5个星期,产量增加了29%。“光伏+渔业”是指建设基台在水面的光伏电站,发电的同时在光伏板下发展渔业,是一种空间资源复合利用的多重发展模式。对水产品来说:第一,光伏组件的冷却作用和遮光作用可以降低水产品睡眠温度,减少水分蒸发,提高鱼虾蟹存活率,减少藻类侵入;第二,光伏供能的智能系统能有效控制养殖水体条件,例如水温和pH;也能实现节水循环,池底排污、杀菌增氧和远程检测,创造了更好的生态环境,持续提升水产品的产量和质量。对于发电运营和节能减排来说:光伏驱动渔业零污染,减少粉尘、二氧化碳、二氧化硫、氮氧化物排放;水面光伏电站还能避免火灾、动物啃咬电缆等情况对电站造成的破坏。渔业增产和节能减排同时实现,能极大提高单位面积土地的经济价值。以江苏渔光一体项目的数据来看,渔光一体草鱼池塘亩产量达到35550~39705千克/公顷,远高于当地常规池塘平均水平(18750千克/公顷)。339亩养殖水面安装50%~75%光伏组件,建立10兆瓦渔光一体池塘,一年共发电1300万千瓦时,年亩发电83万千瓦时,平均月亩发电3196千瓦时。鱼菜(稻)共生,采用水稻、空心菜进行生物处理,累计产出水稻总量为48千克,空心菜总量为3529千克,共计吸收氮元素99千克、磷元素63千克、钾元素44千克,并实现产值附加近4000元,利润3000余元。利用物理、生物净化和养殖技术的有机结合,做到“以鱼养水、以草净水”,有效控制了水产养殖内外源性污染问题,对SS降解率达80%以上,对COD、TN、TP降解率90%以上,净化后水质符合《淡水池塘养殖水排放要求》(SC/T9101—2007)一级标准。路侧光伏是利用高速公路及铁路两侧土地建设光伏电站的一种光伏建设形式。铁路和高速公路沿线的土地常年受到噪声和尾气的污染,这类地带农业经济性较差,如果建造地面光伏系统反而可以减少其他地方的土地消耗和对景观的干预。德国公路两侧有非常多的窄条状光伏电站。德国地面光伏电站中12%是位于公路和铁路两侧110米内的地带。图林根州500千米高速公路110米沿线上的太阳能安装潜力总计可达8吉瓦。以德国巴伐利亚州代根多夫市B8联邦公路以南PhotovoltaikKainzenstadelfeld项目为例,它的总面积约为2万平方米,光伏设施占地面积为13992平方米,光伏板数量为2829块,预计年度发电量为14千瓦时,景观补偿系数为2(景观补偿:联邦自然保护法和建筑法规指出“对自然和景观的干预活动,即对自然平衡或景观的性能和功能造成影响的行为”),景观补偿面积为2298平方米。另外,美国的研究显示太阳能组件周围是适合授粉类植物种植的理想场所,种植效果更好,还可以为授粉媒介(如蜜蜂)提供食物和庇护所。授粉类昆虫新栖息地的建立会对光伏电站附近的收成产生积极影响,因为定居在光伏电站中的蜜蜂(昆虫)会飞向周围耕地,促进农田授粉,使农民从中受益。将授粉友好型植物与靠近农业地点的路侧光伏项目结合起来,可以形成清洁能源,农业以及生物多样性的“三赢”局面。在20世纪80年代,光伏地面系统除大量用于偏僻无电地区、游牧家庭、航海灯塔、孤岛居民供电以及某些特殊领域外,已开始进入一般单独用户、联网用户和商业建筑。进入90年代后,随着常规能源的日益枯竭而引起的发电成本上升和人们环境意识的日益增强,一些国家纷纷开始实施、推广光伏建筑一体化(BIPV)系统。中国人口众多,人口密度大,BIPV系统将建筑与光伏系统或光伏组件相结合,不仅可以节省光伏发电系统的占地面积,而且可以降低其成本,符合中国的国情,因此在中国有很广阔的发展空间。2021年6月,国家能源局综合司下发《关于报送整县(市、区)屋顶分布式光伏开发试点方案的通知》(以下简称《通知》)指出,中国建筑屋顶资源丰富、分布广泛,开发建设屋顶分布式光伏潜力巨大。开展整县(市、区)推进屋顶分布式光伏建设,有利于整合资源实现集约开发,有利于削减电力尖峰负荷,有利于节约优化配电网投资,有利于引导居民绿色能源消费,是实现“碳达峰、碳中和”与乡村振兴两大国家重大战略的重要措施。其中,项目申报试点县(市、区)的党政机关建筑屋顶总面积可安装光伏发电比例不低于50%。以光伏建筑一体化为核心的光伏并网发电应用占据了目前大部分的光伏市场份额。光伏建筑一体化有以下一些优点:建筑物能为光伏系统提供足够的面积,不需要另占土地;能省去光伏系统的支撑结构、省去输电费用;光伏阵列可代替常规建筑材料,节省材料费用;安装与建筑施工结合,节省安装成本;分散发电,避免传输和分电损失(5%~10%),降低输电、分电投资和维修成本;使建筑物的外观更有魅力。在经常为断电而烦恼的地方,建筑物的光电系统可以成为一个可靠的电源。把太阳能同建筑结合起来,将房屋发展成具有独立电源,自我循环式的新型建筑,是人类进步和社会、科学技术发展的必然。联合国能源机构的调查报告显示,BIPV将成为21世纪最重要的新兴产业之一。(1)建筑与光伏系统相结合。建筑与光伏系统相结合,是把封装好的光伏组件(平板或曲面板)安装在居民住宅或建筑物的屋顶上,再与逆变器、蓄电池、控制器、负载等装置相联,并可与外界电网相连,由光伏系统和电网并联向住宅(用户)供电,多余电力向电网反馈,不足电力从电网取用。(2)建筑与光伏组件相结合。建筑与光伏的进一步结合是将光伏器件与建筑材料集成化。一般的建筑物外围护表面采用涂料、装饰瓷砖或幕墙玻璃,目的是为了保护和装饰建筑物。如果用光伏器件代替部分建材,即用光伏组件来做建筑物的屋顶、外墙和窗户,这样既可用做建材也可用以发电,可谓物尽其美。把光伏器件用做建材,必须具备建材所要求的几项条件:坚固耐用、保温隔热、防水防潮、适当的强度和刚度等性能。若是用于窗户、天窗等,则必须能够透光,就是说既可发电又可采光。除此之外,还要考虑安全性能、外观和施工简便等因素。光伏组件在与建筑相结合应用时,还应考虑两个重要因素:1)、为保证光伏组件有较高的光电转化效率,必须尽量保持光伏组件周围的环境温度处于较低的水平,这就要求光伏组件周围有较好的通风条件,因此在光伏组件的设计和安装时,可考虑采用架空形式、双层通风屋面或双层玻璃幕墙形式等;2)、光伏组件的寿命通常是15~25年,而建筑围护结构的寿命通常是50年,在设计时,必须考虑光伏组件失效后的拆卸和更换要求。(3)根据当地的经纬度,确定屋面的倾斜角度。一般情况,由于地球是在不停的围绕太阳转动,所以屋面倾斜角度对整体太阳能发电量的影响并不大,一般不超过5%。相同角度,相同功率的太阳电池,东、西屋面的发电量几乎相等。(4)根据组件的大小,计算每一个屋面可以安装的组件总数及排列方式。(5)根据逆变器输入直流电压,确定每组可串联的总数,由于每一个屋面的朝向不同,光照量和光照时间都不同,一般一个屋面对应一个逆变器,以提高逆变器的效率。一般的地面太阳能光伏发电系统和光伏建筑一体化系统利用太阳能这种可再生的清洁能源进行发电,对促进能源和环境的可持续发展有着重要的意义;与此同时,如果对光伏发电系统的光伏器件使用或回收不当,也会造成对环境的一些负面的影响。其对环境影响的有利因素和不利因素分别列举如下:④没有任何运动部件,在其20年的工作寿命里,需要最少的维护费用;⑤不会造成空气污染。太阳能电池产生lkWp的电能,可以避免1000kg二氧化碳的产生;⑦已形成了一套标准化的设计和调试方法,因此可以分批进行安装和使用,从而避免了一次性投资过大带来的资金压力。①光伏电池在生产过程中需要消耗较高的能量,如使用不合理,有可能导致寿命周期内发电量低于生产耗能的现象;③光伏电池中含有的重金属(如镉)如果回收不当,容易造成严重的环境问题;④废弃的光伏电池及其电池组件有可能渗漏汞、铅、镉,对环境造成危害。伴随着可持续发展意识在世界各地深入人心,全世界光伏发电综合利用经营规模快速扩张,技术不断发展,成本明显降低,呈现出良好的发展前景,很多国家将光伏发电做为关键的新型产业,光伏发电获得更为广泛应用。在2001~2017年间,光伏产业以令人惊讶的速度发展。全世界总装机自250GW升至300GW,年复合增长率达到98%。中国光伏产业也呈现史无前例的发展魅力,在全世界20个以上国家或地区办厂,产品出口至近200个国家和地区,成为中具备国际核心竞争力的战略新型产业。英国是最早开始研究与应用光伏发电技术的国家,英国光伏产业在技术创新与政府部门鼓励赔偿现行政策的双向刺激下,保持高速发展趋势。太阳能发电装机在国外光伏产业中占主导地位,其发展速度和趋势决定了整个光伏产业的发展趋势。日本是最早制订光伏产业发展现行政策的国家,2011~2017年年均复合增长率达到54%,2017年以75GW的总装机量稳居世界第二,现阶段发展以居民用电站为主导。作为东南亚地区最火爆的光伏市场之一,越南已达到每年10%的能源供应增长速度,再加其自身发展趋势和光伏电力能源的优点,吸引着世界各国光伏企业前往投资。光伏发电现阶段已全方位进入产业化发展趋势环节,中国、欧州、英国、日本等传统光伏发电销售市场保持持续增长,东南亚地区、南美洲、中东地区和非州等地区新兴经济体光伏发电也开始快速发展。受益于技术进步、规模经济、开放的市场竞争和行业经验的不断积累,光伏发电的成本在最近十年急剧下降。光伏是所有可再生能源类型中成本下降速度最快的。自2010年以来,太阳能光伏发电(PV)和聚光太阳能热发电(CSP)的成本分别下降了82%、47%。竞拍和购电协议(PPA)的最新数据显示,在2021年投产的项目中,太阳能光伏发电的平均价格能达到039美元/千瓦时,与2019年相比下降了42%,比燃煤发电的价格成本低1/5。2020年,中国光伏系统价格已降至5美元/峰瓦,光伏新增装机发电成本到2025年将低于3元/千瓦时,到2035年和2050年将降至约2元/千瓦时和13元/千瓦时。目前,多个国家的光伏发电的最低价格已经低于煤电,平均价格已经非常接近于煤炭发电的平均价格。成本的下降为光伏的推广清扫了重要阻碍,国际能源信息署(IEA)判断,在未来十年里,全球电能80%的新增长将来自可再生能源。到2050年,可再生能源电力将占到全球总电力结构的85%,其中太阳能电力将占1/3。对于中国,到2030年,电力行业可通过提高可再生能源占比来节省10%的成本。如果各方面积极努力,到2030年,电力行业有望完成80%的碳减排目标。《中国2050年光伏发展展望》报告在联合国马德里气候变化大会上发布,报告预计2025年和2035年间,中国光伏发电总装机规模将分别达到730吉瓦和3000吉瓦,而到2050年,该数据将达到5000吉瓦,光伏将成为中国第一大能源,约占当年全国用电量的40%左右。中国光伏产业的发展也经过长期的技术积累,更离不开国家十多年来的政策扶持。据不完全统计,2000年以来,中国政府推出了100多项支持光伏产业的政策。上世纪90年代,中国的太阳能板制造业开始兴起,1996年,中国政府启动了“光明工程”。2005年,中国政府鼓励光伏零部件出口,仅仅5年后,中国的太阳能光伏板总产量的95%出口到欧美国家。之后由于欧美国家的反倾销制裁,光伏组件出口大幅度下降。2013年7月,国务院发布《关于促进光伏产业健康发展的若干意见》。2014年9月,国家能源局发布《进一步落实分布式光伏发电有关政策的通知》。2015年,国家能源局推出“领跑者”光伏扶持专项计划。2019年1月,国家发改委、国家能源局发布《关于积极推进风电、光伏发电无补贴平价上网有关工作的通知》,开始在全国范围推广无补贴光伏项目。正是这一列的政策使这一产业实现了从快速起步、产业升级的井喷,到全球的绝对领先地位的转变。从2013年中国第一个光伏发电站建成,仅仅7年时间就成为全球最大光伏发电国,并形成与发达国家全产业链竞争的优势。至2020年,在全球光伏企业20强中,中国企业占据着16个。2023年12月29日20时58分,由贵州能源集团投建的关岭自治县盘江百万千瓦级光伏基地项目(一期1050兆瓦)成功并网,这也是贵州省首个百万千瓦级光伏项目。随着人们对可再生能源的度不断提高,太阳能光伏发电系统作为一种清洁、可再生的能源形式,正逐渐被广泛应用于全球各地。本文将深入探讨太阳能光伏发电系统的发电原理,以及其在现代能源体系中的重要地位。太阳能光伏发电系统主要利用了光伏效应,即光能直接转化为电能的过程。其核心部分是光伏电池板,由大量的光伏电池串联或并联组成。当太阳光照射到光伏电池板上时,光能被吸收并释放出电子和空穴对,这些电子和空穴对进一步形成电流,通过连接在外侧的负载产生电能。太阳能光伏发电系统的应用优势主要表现在以下几个方面:它是清洁能源,不产生任何污染物,对环境友好。太阳能资源丰富,分布广泛,具备巨大的开发潜力。第三,光伏发电系统具有较高的发电效率,部分光伏电池板的转换效率可达20%以上。太阳能光伏发电系统运行稳定,不受地理、气候等条件的影响,具有很高的可靠性。随着科技的进步和产业规模的扩大,太阳能光伏发电系统的成本正在逐渐降低,使得其在全球能源市场中的竞争力不断提升。政策扶持也在推动太阳能光伏发电系统的快速发展。在全球范围内,许多国家都出台了鼓励新能源发展的政策,为太阳能光伏发电系统的广泛应用提供了良好的政策环境。随着电动汽车、智能电网等新兴产业的快速发展,太阳能光伏发电系统的应用领域更加广泛。电动汽车需要大量的电力支持,而太阳能光伏发电系统能够为电动汽车提供绿色、可再生的电能,有助于实现碳中和目标。同时,智能电网的发展也离不开可再生能源的支持,太阳能光伏发电系统能够有效地缓解电力需求的高峰期压力,提高电网的稳定性。总体来看,太阳能光伏发电系统具有巨大的发展潜力,未来的市场前景非常广阔。随着技术的不断创新和产业规模的持续扩大,太阳能光伏发电系统的成本将进一步降低,其在全球能源结构中的地位也将更加重要。太阳能光伏发电系统作为一种清洁、可再生的能源形式,已经在全球范围内得到了广泛应用。其发电原理是基于光伏效应,将光能直接转化为电能的过程。这种能源具备无污染、资源丰富、转换效率高等优点,是未来可持续发展的重要选择之一。随着政策支持和技术的进步,太阳能光伏发电系统的应用领域将更加广泛,未来的市场前景非常乐观。光伏发电是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术。主要由太阳电池板(组件)、控制器和逆变器三大部分组成,主要部件由电子元器件构成。太阳能电池经过串联后进行封装保护可形成大面积的太阳电池组件,再配合上功率控制器等部件就形成了光伏发电装置。截至2023年6月底,中国太阳能发电装机容量约7亿千瓦,同比增长8%;新增光伏装机同比增长154%。早在1839年,法国科学家贝克雷尔(Becqurel)就发现,光照能使半导体材料的不同部位之间产生电位差。这种现象后来被称为“光生伏特效应”,简称“光伏效应”。1954年,美国科学家恰宾和皮尔松在美国贝尔实验室首次制成了实用的单晶硅太阳电池,诞生了将太阳光能转换为电能的实用光伏发电技术。20世纪70年代后,随着现代工业的发展,全球能源危机和大气污染问题日益突出,传统的燃料能源正在一天天减少,对环境造成的危害日益突出,同时全球约有20亿人得不到正常的能源供应。这个时候,全世界都把目光投向了可再生能源,希望可再生能源能够改变人类的能源结构,维持长远的可持续发展。太阳能以其独有的优势而成为人们重视的焦点。丰富的太阳辐射能是重要的能源,是取之不尽、用之不竭的、无污染、廉价、人类能够自由利用的能源。太阳能每秒钟到达地面的能量高达800兆瓦时,假如把地球表面1%的太阳能转为电能,转变率5%,每年发电量可达6×1012千瓦小时,相当于世界上能耗的40倍。正是由于太阳能的这些独特优势,20世纪80年代后,太阳能电池的种类不断增多、应用范围日益广阔、市场规模也逐步扩大。20世纪90年代后,光伏发电快速发展,到2006年,世界上已经建成了10多座兆瓦级光伏发电系统,6个兆瓦级的联网光伏电站。美国是最早制定光伏发电的发展规划的国家。1997年又提出“百万屋顶”计划。日本1992年启动了新阳光计划,到2003年日本光伏组件生产占世界的50%,世界前10大厂商有4家在日本。而德国新可再生能源法规定了光伏发电上网电价,大大推动了光伏市场和产业发展,使德国成为继日本之后世界光伏发电发展最快的国家。瑞士、法国、意大利、西班牙、芬兰等国,也纷纷制定光伏发展计划,并投巨资进行技术开发和加速工业化进程。世界光伏组件在1990年—2005年年平均增长率约15%。20世纪90年代后期,发展更加迅速,1999年光伏组件生产达到200兆瓦。商品化电池效率从10%~13%提高到13%~15%,生产规模从1~5兆瓦/年发展到5~25兆瓦/年,并正在向50兆瓦甚至100兆瓦扩大。光伏组件的生产成本降到3美元/瓦以下。2011年,全球光伏新增装机容量约为5GW,较上年的1GW相比,涨幅高达52%,全球累计安装量超过67GW。全球近28GW的总装机量中,有将近20GW的系统安装于欧洲,但增速相对放缓,其中意大利和德国市场占全球装机增长量的55%,分别为6GW和5GW。2011年以中日印为代表的亚太地区光伏产业市场需求同比增长129%,其装机量分别为2GW,1GW和350MW。在日趋成熟的北美市场,新增安装量约1GW,增幅高达84%。其中中国是全球光伏发电安装量增长最快的国家,2011年的光伏发电安装量比2010年增长了约5倍,2011年电池产量达到20GW,约占全球的65%。截至2011年底,中国共有电池企业约115家,总产能为5GW左右。其中产能1GW以上的企业共14家,占总产能的53%;在100MW和1GW之间的企业共63家,占总产能的43%;剩余的38家产能皆在100MW以内,仅占全国总产能的4%。规模、技术、成本的差异化竞争格局逐渐明晰。国内前十家组件生产商的出货量占到电池总产量的60%。在今后的十几年中,中国光伏发电的市场将会由独立发电系统转向并网发电系统,包括沙漠电站和城市屋顶发电系统。中国太阳能光伏发电发站潜力巨大,配合积极稳定的政策扶持,到2030年光伏装机容量将达1亿千瓦,年发电量可达3亿兆瓦时,相当于少建30多个大型煤电厂。国家未来三年将投资200亿补贴光伏业,中国太阳能光伏发电又迎来了新一轮的快速增长,并吸引了更多的战略投资者融入到这个行业中来。2015年9月7日,江苏省首个供电所光伏发电项目在南京市浦口区正式并网运行,农村居民也用上了“绿色电”。接下来光伏发电项目将在农村变电所推广。2015年11月,安徽省来安县全面启动乡村光伏发电项目,11个美好乡村“空壳村”装机容量为60KW以上的光伏电站进入招标程序。据初步估算,并网发电后各村每年能提供72000KWh清洁电能,村级集体经济能增收5万元以上。2015年1-6月,全国新增光伏发电装机容量773万千瓦,截至2015年6月底,全国光伏发电装机容量达到3578万千瓦。自2013年起,光伏发电连续3年新增装机容量超过1000万千瓦;截至2015年底,光伏发电累计装机容量达到约4300万千瓦,超过德国成为全球第一。光伏产业正发力“走出去”。国家能源局数据显示,2015年光伏电池及组件出口量达到2500万千瓦以上,出口额达到144亿美元。光伏发电的主要原理是半导体的光电效应。光子照射到金属上时,它的能量可以被金属中某个电子全部吸收,电子吸收的能量足够大,能克服金属原子内部的库仑力做功,离开金属表面逃逸出来,成为光电子。硅原子有4个外层电子,如果在纯硅中掺入有5个外层电子的原子如磷原子,就成为N型半导体;若在纯硅中掺入有3个外层电子的原子如硼原子,形成P型半导体。当P型和N型结合在一起时,接触面就会形成电势差,成为太阳能电池。当太阳光照射到P-N结后,电流便从P型一边流向N型一边,形成电流。光电效应是物理学中一个重要而神奇的现象。在高于某特定频率的电磁波(该频率称为极限频率thresholdfrequency)照射下,某些物质内部的电子吸收能量后逸出而形成电流,即光生电。多晶硅经过铸锭、破锭、切片等程序后,制作成待加工的硅片。在硅片上掺杂和扩散微量的硼、磷等,就形成P-N结。然后采用丝网印刷,将精配好的银浆印在硅片上做成栅线,经过烧结,同时制成背电极,并在有栅线的面涂一层防反射涂层,电池片就至此制成。电池片排列组合成电池组件,就组成了大的电路板。一般在组件四周包铝框,正面覆盖玻璃,反面安装电极。有了电池组件和其他辅助设备,就可以组成发电系统。为了将直流电转化交流电,需要安装电流转换器。发电后可用蓄电池存储,也可输入公共电网。发电系统成本中,电池组件约占50%,电流转换器、安装费、其他辅助部件以及其他费用占另外50%。无论从世界还是从中国来看,常规能源都是很有限的。中国的一次性能源储量远远低于世界的平均水平,大约只有世界总储量的10%。太阳能是人类取之不尽用之不竭的可再生能源,具有充分的清洁性、绝对的安全性、相对的广泛性、确实的长寿性和免维护性、资源的充足性及潜在的经济性等优点,在长期的能源战略中具有重要地位。③不受资源分布地域的限制,可利用建筑屋面的优势;例如,无电地区,以及地形复杂地区;但是,太阳能电池板的生产却具有高污染、高能耗的特点,在现有的条件下,生产国内自己使用的电池板还说的过去,不过大量出口等于污染中国,造福世界了,据统计,生产一块1m×5m的太阳能板必须燃烧超过40公斤煤,但即使中国最没有效率的火力发电厂也能够用这些煤生产130千瓦时的电(一般一块1mx6m的太阳能板一年发电量在250千瓦时以上)——这足够让2瓦的发光二极管(LED)灯泡按照每天工作12小时计算发光30年。大规模生产转化率:8—21%;大多在5%。再提高效率超过30%以上的技术突破可能性较小。大规模生产转化率:18—5%;大多在16%。和单晶硅一样,因材料物理性能限制,要达到30%以上的转化率的可能性较小。砷化镓太阳能电池组的转化率比较高,约23%。但是价格昂贵,多用于航空航天等重要地方。基本没有规模化产业化的实用价值。薄膜光伏电池具有轻薄、质轻、柔性好等优势,应用范围非常广泛,尤其适合用在光伏建筑一体化之中。如果薄膜电池组件效率与晶硅电池相差无几,其性价比将是无可比拟的。在柔性衬底上制备的薄膜电池,具有可卷曲折叠、不怕摔碰、重量轻、弱光性能好等优势,将来的应用前景将会更加广阔。晶硅光伏组件安装后,暴晒50—100天,效率衰减约2—3%,此后衰减幅度大幅减缓并稳定有每年衰减5—8%,20年衰减约20%。单晶组件衰减要约少于多晶组件。非晶光做组件的衰减约低于晶硅。因此,提升转化率、降低每瓦成本仍将是光伏未来发展的两大主题。无论是哪种方式,大规模应用如果能够将转化率提升到30%,成本在每千瓦五千元以下(和水电相平),那么人类将在核聚变发电研究成功之前得到最为广泛、最清洁、最廉价的几乎无限的可靠新能源。独立光伏发电也叫离网光伏发电。主要由太阳能电池组件、控制器、蓄电池组成,若要为交流负载供电,还需要配置交流逆变器。独立光伏电站包括边远地区的村庄供电系统,太阳能户用电源系统,通信信号电源、阴极保护、太阳能路灯等各种带有蓄电池的可以独立运行的光伏发电系统。并网光伏发电就是太阳能组件产生的直流电经过并网逆变器转换成符合市电电网要求的交流电之后直接接入公共电网。可以分为带蓄电池的和不带蓄电池的并网发电系统。带有蓄电池的并网发电系统具有可调度性,可以根据需要并入或退出电网,还具有备用电源的功能,当电网因故停电时可紧急供电。带有蓄电池的光伏并网发电系统常常安装在居民建筑;不带蓄电池的并网发电系统不具备可调度性和备用电源的功能,一般安装在较大型的系统上。并网光伏发电有集中式大型并网光伏电站一般都是国家级电站,主要特点是将所发电能直接输送到电网,由电网统一调配向用户供电。但这种电站投资大、建设周期长、占地面积大,还没有太大发展。而分散式小型并网光伏,特别是光伏建筑一体化光伏发电,由于投资小、建设快、占地面积小、政策支持力度大等优点,是并网光伏发电的主流。分布式光伏发电系统,又称分散式发电或分布式供能,是指在用户现场或靠近用电现场配置较小的光伏发电供电系统,以满足特定用户的需求,支持现存配电网的经济运行,或者同时满足这两个方面的要求。分布式光伏发电系统的基本设备包括光伏电池组件、光伏方阵支架、直流汇流箱、直流配电柜、并网逆变器、交流配电柜等设备,另外还有供电系统监控装置和环境监测装置。其运行模式是在有太阳辐射的条件下,光伏发电系统的太阳能电池组件阵列将太阳能转换输出的电能,经过直流汇流箱集中送入直流配电柜,由并网逆变器逆变成交流电供给建筑自身负载,多余或不足的电力通过联接电网来调节。光伏发电系统是由光伏组件,蓄电池组,充放电控制器,逆变器,交流配电柜,太阳跟踪控制系统等设备组成。其部分设备的作用是:在有光照(无论是太阳光,还是其它发光体产生的光照)情况下,电池吸收光能,电池两端出现异号电荷的积累,即产生“光生电压”,这就是“光生伏特效应”。在光生伏特效应的作用下,太阳能电池的两端产生电动势,将光能转换成电能,是能量转换的器件。太阳能电池一般为硅电池,分为单晶硅太阳能电池,多晶硅太阳能电池和非晶硅太阳能电池三种。其作用是贮存太阳能电池方阵受光照时发出的电能并可随时向负载供电。太阳能电池发电对所用蓄电池组的基本要求是:a.自放电率低;b.使用寿命长;c.深放电能力强;d.充电效率高;e.少维护或免维护;f.工作温度范围宽;g.价格低廉。是能自动防止蓄电池过充电和过放电的设备。由于蓄电池的循环充放电次数及放电深度是决定蓄电池使用寿命的重要因素,因此能控制蓄电池组过充电或过放电的充放电控制器是必不可少的设备。是将直流电转换成交流电的设备。由于太阳能电池和蓄电池是直流电源,而负载是交流负载时,逆变器是必不可少的。逆变器按运行方式,可分为独立运行逆变器和并网逆变器。独立运行逆变器用于独立运行的太阳能电池发电系统,为独立负载供电。并网逆变器用于并网运行的太阳能电池发电系统。逆变器按输出波型可分为方波逆变器和正弦波逆变器。方波逆变器电路简单,造价低,但谐波分量大,一般用于几百瓦以下和对谐波要求不高的系统。正弦波逆变器成本高,但可以适用于各种负载。由于相对于某一个固定地点的太阳能光伏发电系统,一年春夏秋冬四季、每天日升日落,太阳的光照角度时时刻刻都在变化,如果太阳能电池板能够时刻正对太阳,发电效率才会达到最佳状态。世界上通用的太阳跟踪控制系统都需要根据安放点的经纬度等信息计算一年中的每一天的不同时刻太阳所在的角度,将一年中每个时刻的太阳位置存储到PLC、单片机或电脑软件中,也就是靠计算太阳位置以实现跟踪。采用的是电脑数据理论,需要地球经纬度地区的的数据和设定,一旦安装,就不便移动或装拆,每次移动完就必须重新设定数据和调整各个参数;原理、电路、技术、设备复杂,非专业人士不能够随便操作。把加装了智能太阳跟踪仪的太阳能发电系统安装在高速行驶的汽车、火车,以及通讯应急车、特种军用汽车、军舰或轮船上,不论系统向何方行驶、如何调头、拐弯,智能太阳跟踪仪都能保证设备的要求跟踪部位正对太阳。③不受资源分布地域的限制,可利用建筑屋面的优势;例如,无电地区,以及地形复杂地区;过去5年,光伏发电的成本已下降了三分之一,在南美等国光伏发电已经与零售电价持平,甚至是低于零售电价,未来光伏发电的成本还将进一步凸显。火力发电会带来极高的环境治理成本,二十次的巴黎气候峰会便是引导各国积极启动碳交易市场定价机制,由此给高耗能企业带来的成本增加则显而易见,因此从这个角度而言煤炭发电成本将高于光伏发电。用户太阳能电源:(1)小型电源10-100W不等,用于边远无电地区如高原、海岛、牧区、边防哨所等军民生活用电,如照明、电视、收录机等;(2)3-5KW家庭屋顶并网发电系统;(3)光伏水泵:解决无电地区的深水井饮用、灌溉。交通领域如航标灯、交通/铁路信号灯、交通警示/标志灯、宇翔路灯、高空障碍灯、高速公路/铁路无线电话亭、无人值守道班供电等。通讯/通信领域:太阳能无人值守微波中继站、光缆维护站、广播/通讯/寻呼电源系统;农村载波电话光伏系统、小型通信机、士兵GPS供电等。石油、海洋、气象领域:石油管道和水库闸门阴极保护太阳能电源系统、石油钻井平台生活及应急电源、海洋检测设备、气象/水文观测设备等。家庭灯具电源:如庭院灯、路灯、手提灯、野营灯、登山灯、垂钓灯、黑光灯、割胶灯、节能灯等。光伏电站:10KW-50MW独立光伏电站、风光(柴)互补电站、各种大型停车厂充电站等。太阳能建筑将太阳能发电与建筑材料相结合,使得未来的大型建筑实现电力自给,是未来一大发展方向。其他领域包括:(1)与汽车配套:太阳能汽车/电动车、电池充电设备、汽车空调、换气扇、冷饮箱等;(2)太阳能制氢加燃料电池的再生发电系统;(3)海水淡化设备供电;(4)卫星、航天器、空间太阳能电站等。国家能源局于2013年11月18日发布《分布式光伏发电项目管理暂行办法》第一条为规范分布式光伏发电项目建设管理,推进分布式光伏发电应用,根据《中华人民共和国可再生能源法》、《中华人民共和国电力法》、《中华人民共和国行政许可法》,以及《国务院关于促进光伏产业健康发展的若干意见》,制定本办法。第二条分布式光伏发电是指在用户所在场地或附近建设运行,以用户侧自发自用为主、多余电量上网且在配电网系统平衡调节为特征的光伏发电设施。第三条鼓励各类电力用户、投资企业、专业化合同能源服务公司、个人等作为项目单位,投资建设和经营分布式光伏发电项目。第四条国务院能源主管部门负责全国分布式光伏发电规划指导和监督管理;地方能源主管部门在国务院能源主管部门指导下,负责本地区分布式光伏发电规划、建设的监督管理;国家能源局派出机构负责对本地区分布式光伏发电规划和政策执行、并网运行、市场公平及运行安全进行监管。第五条分布式光伏发电实行“自发自用、余电上网、就近消纳、电网调节”的运营模式。电网企业采用先进技术优化电网运行管理,为分布式光伏发电运行提供系统支撑,保障电力用户安全用电。鼓励项目投资经营主体与同一供电区内的电力用户在电网企业配合下以多种方式实现分布式光伏发电就近消纳。第六条国务院能源主管部门依据全国太阳能发电相关规划、各地区分布式光伏发电发展需求和建设条件,对需要国家资金补贴的项目实行总量平衡和年度指导规模管理。不需要国家资金补贴的项目不纳入年度指导规模管理范围。第七条省级能源主管部门根据本地区分布式光伏发电发展情况,提出下一年度需要国家资金补贴的项目规模申请。国务院能源主管部门结合各地项目资源、实际应用以及可再生能源电价附加征收情况,统筹协调平衡后,下达各地区年度指导规模,在年度中期可视各地区实施情况进行微调。第八条国务院能源主管部门下达的分布式光伏发电年度指导规模,在该年度内未使用的规模指标自动失效。当年规模指标与实际需求差距较大的,地方能源主管部门可适时提出调整申请。第九条鼓励各级地方政府通过市场竞争方式降低分布式光伏发电的补贴标准。优先支持申请低于国家补贴标准的分布式光伏发电项目建设。第十条省级及以下能源主管部门依据国务院投资项目管理规定和国务院能源主管部门下达的本地区分布式光伏发电的年度指导规模指标,对分布式光伏发电项目实行备案管理。具体备案办法由省级人民政府制定。第十一条项目备案工作应根据分布式光伏发电项目特点尽可能简化程序,免除发电业务许可、规划选址、土地预审、水土保持、环境影响评价、节能评估及社会风险评估等支持性文件。第十二条对个人利用自有住宅及在住宅区域内建设的分布式光伏发电项目,由当地电网企业直接登记并集中向当地能源主管部门备案。不需要国家资金补贴的项目由省级能源主管部门自行管理。第十三条各级管理部门和项目单位不得自行变更项目备案文件的主要事项,包括投资主体、建设地点、项目规模、运营模式等。确需变更时,由备案部门按程序办理。第十四条在年度指导规模指标范围内的分布式光伏发电项目,自备案之日起两年内未建成投产的,在年度指导规模中取消,并同时取消享受国家资金补贴的资格。第十五条鼓励地市级或县级政府结合当地实际,建立与电网接入申请、并网调试和验收、电费结算和补贴发放等相结合的分布式光伏发电项目备案、竣工验收等一站式服务体系,简化办理流程,提高管理效率。第十六条分布式光伏发电项目所依托的建筑物及设施应具有合法性,项目单位与项目所依托的建筑物、场地及设施所有人非同一主体时,项目单位应与所有人签订建筑物、场地及设施的使用或租用协议,视经营方式与电力用户签订合同能源服务协议。第十七条分布式光伏发电项目的设计和安装应符合有关管理规定、设备标准、建筑工程规范和安全规范等要求。承担项目设计、咨询、安装和监理的单位,应具有国家规定的相应资

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论