版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省邵阳市大祥区2023-2024学年数学九上期末复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.若关于x的一元二次方程x2+2x﹣m=0的一个根是x=1,则m的值是()A.1 B.2 C.3 D.42.如图,点B,C,D在⊙O上,若∠BCD=30°,则∠BOD的度数是()A.75° B.70° C.65° D.60°3.点A(﹣3,y1),B(﹣1,y2),C(1,y3)都在反比例函数y=﹣的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y2<y1<y34.如图,AB是⊙O的直径,BT是⊙O的切线,若∠ATB=45°,AB=2,则阴影部分的面积是(
)A.2 B.1 C.32-5.用配方法解方程-4x+3=0,下列配方正确的是()A.=1 B.=1 C.=7 D.=46.已知是方程的一个根,则代数式的值等于()A.3 B.2 C.0 D.17.如图,AB为⊙O的直径,点C,D在⊙O上.若∠AOD=30°,则∠BCD等于()A.75° B.95° C.100° D.105°8.如图:已知AD∥BE∥CF,且AB=4,BC=5,EF=4,则DE=()A.5 B.3 C.3.2 D.49.已知关于x的一元二次方程x2-(2k+1)x+k+1=0,若x1+x2=3,则k的值是()A.0 B.1 C.﹣1 D.210.某人沿倾斜角为β的斜坡前进100m,则他上升的最大高度是()mA. B. C. D.二、填空题(每小题3分,共24分)11.已知△ABC中,AB=10,AC=2,∠B=30°,则△ABC的面积等于_____.12.若一元二次方程的一个根是,则__________.13.平面直角坐标系xOy中,若点P在曲线y=上,连接OP,则OP的最小值为_____.14.如图,已知⊙O的半径为10,AB⊥CD,垂足为P,且AB=CD=16,则OP=_____.15.已知扇形的面积为3πcm2,半径为3cm,则此扇形的圆心角为_____度.16.小天想要计算一组数据92,90,94,86,99,85的方差S02,在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,﹣4,9,﹣5,记这组新数据的方差为S12,则S12__S02(填“>”,“=”或”<”)17.从﹣2,﹣1,1,2四个数中任取两数,分别记为a、b,则关于x的不等式组有解的概率是_____.18.如图,已知点是函数图象上的一个动点.若,则的取值范围是__________.三、解答题(共66分)19.(10分)如图,一面利用墙,用篱笆围成的矩形花圃ABCD的面积为Sm2,垂直于墙的AB边长为xm.(1)若墙可利用的最大长度为8m,篱笆长为18m,花圃中间用一道篱笆隔成两个小矩形.①求S与x之间的函数关系式;②如何围矩形花圃ABCD的面积会最大,并求最大面积.(2)若墙可利用最大长度为50m,篱笆长99m,中间用n道篱笆隔成(n+1)小矩形,当这些小矩形都是正方形且x为正整数时,请直接写出所有满足条件的x、n的值.20.(6分)如图,是的直径,点在上且,连接,过点作交的延长线于点.求证:是的切线;
21.(6分)如图,中,,以为直径作,交于点,交的延长线于点,连接,.(1)求证:是的中点;(2)若,求的长.22.(8分)为了解学生的艺术特长发展情况,某校决定围绕“在舞蹈、乐器、声乐、戏曲、其它活动项目中,你最喜欢哪一项活动(每人只限一项)”的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)扇形统计图中“戏曲”部分对应的扇形的圆心角为度;(2)若在“舞蹈、乐器、声乐、戏曲”项目中任选两项成立课外兴趣小组,请用列举法求恰好选中“舞蹈、声乐”这两项的概率.23.(8分)画出如图几何体的主视图、左视图、俯视图.24.(8分)(1)已知,求的值;(2)已知直线分别截直线于点,截直线于点,且,,求的长.25.(10分)先化简,再求值:,然后从0,1,2三个数中选择一个恰当的数代入求值.26.(10分)如图,已知二次函数的顶点为(2,),且图象经过A(0,3),图象与x轴交于B、C两点.(1)求该函数的解析式;(2)连结AB、AC,求△ABC面积.
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据一元二次方程的解的定义,把x=1代入方程得1+2﹣m=0,然后解关于m的一次方程即可.【详解】解:把x=1代入x2+2x﹣m=0得1+2﹣m=0,解得m=1.故选:C.【点睛】本题考查一元二次的代入求参数,关键在于掌握基本运算方法.2、D【分析】根据在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得答案.【详解】∵∠BCD=30°,∴∠BOD=2∠BCD=2×30°=60°.故选:D.【点睛】本题考查了圆的角度问题,掌握圆周角定理是解题的关键.3、C【解析】将x的值代入函数解析式中求出函数值y即可判断.【详解】当x=-3时,y1=1,
当x=-1时,y2=3,
当x=1时,y3=-3,
∴y3<y1<y2
故选:C.【点睛】考查反比例函数图象上的点的特征,解题的关键是灵活运用所学知识解决问题.4、B【分析】设AT交⊙O于点D,连结BD,根据圆周角定理可得∠ADB=90°,再由切线性质结合已知条件得△BDT和△ABD都为等腰直角三角形,由S阴=S△BDT计算即可得出答案.【详解】设AT交⊙O于点D,连结BD,如图:∵AB是⊙O的直径,∴∠ADB=90°,又∵∠ATB=45°,BT是⊙O切线,∴△BDT和△ABD都为等腰直角三角形,∵AB=2,∴AD=BD=TD=22AB=2∴弓形AD的面积等于弓形BD的面积,∴S阴=S△BDT=12×2×2故答案为B.【点睛】本题考查了切线的性质,圆周角定理,等腰直角三角形的判定,解决本题的关键是利用等腰直角三角形的性质把阴影部分的面积转化为三角形的面积.5、A【解析】用配方法解方程-4x+3=0,移项得:-4x=-3,配方得:-4x+4=1,即=1.故选A.6、A【分析】根据题意,将代入方程得,移项即可得结果.【详解】∵是方程的一个根,∴,∴,故选A.【点睛】本题考查一元二次方程的解,已知方程的根,只需将根代入方程即可.7、D【解析】试题解析:连接故选D.点睛:圆内接四边形的对角互补.8、C【分析】根据平行线分线段成比例定理列出比例式,代入计算即可.【详解】解:∵AD∥BE∥CF,∴,即,解得,DE=3.2,故选:C.【点睛】本题考查了平行线分线段成比例,正确列出比例式是解题的关键.三条平行线截两条直线,所得的对应线段成比例.9、B【分析】利用根与系数的关系得出x1+x2=2k+1,进而得出关于k的方程求出即可.【详解】解:设方程的两个根分别为x1,x2,
由x1+x2=2k+1=3,
解得:k=1,
故选B.【点睛】本题考查了一元二次方程的根与系数的关系,能把求k的值的问题转化为解方程得问题是关键.10、B【分析】设他上升的最大高度是hm,根据坡角及三角函数的定义即可求得结果.【详解】设他上升的最大高度是hm,由题意得,解得故选:B.二、填空题(每小题3分,共24分)11、15或10【分析】作AD⊥BC交BC(或BC延长线)于点D,分AB、AC位于AD异侧和同侧两种情况,先在Rt△ABD中求得AD、BD的值,再在Rt△ACD中利用勾股定理求得CD的长,继而就两种情况分别求出BC的长,根据三角形的面积公式求解可得.【详解】解:作AD⊥BC交BC(或BC延长线)于点D,①如图1,当AB、AC位于AD异侧时,在Rt△ABD中,∵∠B=30°,AB=10,∴AD=ABsinB=5,BD=ABcosB=5,在Rt△ACD中,∵AC=2,∴CD=,则BC=BD+CD=6,∴S△ABC=•BC•AD=×6×5=15;②如图2,当AB、AC在AD的同侧时,由①知,BD=5,CD=,则BC=BD-CD=4,∴S△ABC=•BC•AD=×4×5=10.综上,△ABC的面积是15或10,故答案为15或10.【点睛】本题主要考查解直角三角形,解题的关键是熟练掌握三角函数的运用、分类讨论思想的运算及勾股定理.12、1【分析】将x=1代入一元二次方程,即可求得m的值,本题得以解决.【详解】解:∵一元二次方程有一个根为x=1,
∴11-6+m=0,
解得,m=1,
故答案为1.【点睛】本题考查一元二次方程的解,解答本题的关键是明确题意,求出m的值.13、1【分析】设点P(a,b),根据反比例函数图象上点的坐标特征可得=18,根据=,且≥2ab,可求OP的最小值.【详解】解:设点P(a,b)∵点P在曲线y=上,∴=18∵≥0,∴≥2ab,∵=,且≥2ab,∴≥2ab=31,∴OP最小值为1.【点睛】本题考查了反比例函数图象上点的坐标特征,灵活运用≥2ab是本题的关键.14、6【分析】根据题意作出合适的辅助线,然后根据垂径定理、勾股定理即可求得OP的长,本题得以解决.【详解】解:作OE⊥AB交AB与点E,作OF⊥CD交CD于点F,连接OB,如图所示,则AE=BE,CF=DF,∠OFP=∠OEP=∠OEB=90°,又∵圆O的半径为10,AB⊥CD,垂足为P,且AB=CD=16,∴∠FPE=90°,OB=10,BE=8,∴四边形OEPF是矩形,OE==6,同理可得,OF=6,∴EP=6,∴OP=,故答案为:.【点睛】本题考查垂径定理、勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.15、120【分析】利用扇形的面积公式:S=计算即可.【详解】设扇形的圆心角为n°.则有3π=,解得n=120,故答案为120【点睛】此题主要考查扇形的面积公式,解题的关键是熟知扇形的面积公式的运用.16、=【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.【详解】∵一组数据中的每一个数据都加上(或都减去)同一个常数后,它的平均数都加上(或都减去)这一个常数,两数进行相减,方差不变,∴则S12=S1.故答案为:=.【点睛】本题考查方差的意义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立,关键是掌握一组数据都加上同一个非零常数,方差不变.17、.【分析】根据关于x的不等式组有解,得出b≤x≤a+1,根据题意列出树状图得出所有等情况数和关于x的不等式组有解的情况数,再根据概率公式即可得出答案.【详解】解:∵关于x的不等式组有解,∴b≤x≤a+1,根据题意画图如下:共有12种等情况数,其中关于x的不等式组有解的情况分别是,,,,,,,,共8种,则有解的概率是;故答案为:.【点睛】本题考查了不等式组的解和用列举法求概率,熟练掌握并灵活运用是解题的关键.18、【分析】根据得-1<a<1,再根据二次函数的解析式求出对称轴,再根据函数的图像与性质即可求解.【详解】∵∴-1<a<1,∵函数对称轴x=∴当a=,y有最大值当a=-1时,∴则的取值范围是故填:.【点睛】此题主要考查二次函数的图像与性质,解题的关键是根据题意函数图像进行求解.三、解答题(共66分)19、(1)①S=﹣3x2+18x;②当x=3米时,S最大,为27平方米;(2)n=3,x=11;或n=4,x=9,或n=15,x=3,或n=48,x=1【分析】(1)①根据等量关系“花圃的面积=花圃的长×花圃的宽”列出函数关系式,并确定自变量的取值范围;②通过函数关系式求得S的最大值;(2)根据等量关系“花圃的长=(n+1)×花圃的宽”写出符合题中条件的x,n.【详解】(1)①由题意得:S=x×(18﹣3x)=﹣3x2+18x;②由S=﹣3x2+18x=﹣3(x﹣3)2+27,∴当x=3米时,S最大,为27平方米;(2)根据题意可得:(n+2)x+(n+1)x=99,则n=3,x=11;或n=4,x=9,或n=15,x=3,或n=48,x=1.【点睛】此题主要考查二次函数的应用,解题的根据是根据题意找到等量关系列出方程或函数关系进行求解.20、见解析【分析】连结,由,根据圆周角定理得,而,则,可判断,由于,所以,然后根据切线的判定定理得到是的切线;【详解】解:证明:连结,如图,,,,,,,,,是的切线;
【点睛】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.21、(1)详见解析;(2).【分析】(1)根据题意得出,再根据三线合一即可证明;(2)在中,根据已知可求得,,,再证明,得出,代入数值即可得出CE.【详解】(1)证明:是的直径,,又是中点.(2)解:,,,,,,.,.【点睛】本题考查了相似三角形的判定及性质,熟练掌握定理是解题的关键.22、(1)28.8;(2)【分析】(1)用喜欢声乐的人数除以它所占百分比即可得到调查的总人数,用总人数分别减去喜欢舞蹈、乐器、和其它的人数得到喜欢戏曲的人数,即可得出答案;(2)先画树状图展示所有12种等可能的结果数,再找出恰好选中“①舞蹈、③声乐”两项活动的结果数,然后根据概率公式计算.【详解】(1)抽查的人数=8÷16%=50(名);喜欢“戏曲”活动项目的人数=50﹣12﹣16﹣8﹣10=4(人);扇形统计图中“戏曲”部分对应的扇形的圆心角为360°×=28.8°;故答案为:28.8;(2)舞蹈、乐器、声乐、戏曲的序号依次用①②③④表示,画树状图:共有12种等可能的结果数,其中恰好选中“①舞蹈、③声乐”两项活动的有2种情况,所有故恰好选中“舞蹈、声乐”两项活动的概率==.【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了扇形统计图和条形统计图.23、如图所示,见解析.【分析】根据长对
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版新型建筑材料铝合金模板施工合同3篇
- 2025年度智能家居灯具音响设备研发与销售合同4篇
- 二零二五年度承包学校食堂的食品安全信用体系建设合同3篇
- 2025年度煤矿企业员工劳动合同范本(含试用期管理规定)4篇
- 专业高速救援工作人员服务协议规范示例一
- 二零二五版珠宝首饰抵押典当合同范本3篇
- 精细化2025年度独立董事履职责任与权益保障协议2篇
- 2025年度智能硬件ODM合作协议模板3篇
- 第七单元第 24 课 人民解放战争的胜利2023-2024学年八年级上册历史同步说课稿(部编版)
- 二零二五年度班主任教师团队协作与培训合同3篇
- 2024年海口市选调生考试(行政职业能力测验)综合能力测试题及答案1套
- 六年级数学质量分析及改进措施
- 一年级下册数学口算题卡打印
- 2024年中科院心理咨询师新教材各单元考试题库大全-下(多选题部分)
- 真人cs基于信号发射的激光武器设计
- 【阅读提升】部编版语文五年级下册第三单元阅读要素解析 类文阅读课外阅读过关(含答案)
- 四年级上册递等式计算练习200题及答案
- 法院后勤部门述职报告
- 2024年国信证券招聘笔试参考题库附带答案详解
- 道医馆可行性报告
- 仙家送钱表文-文字打印版
评论
0/150
提交评论