版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
GenerativeAdversarialNetwork(GAN)RestrictedBoltzmannMachine:://.tw/~tlkagk/courses/MLDS_2015_2/Lecture/RBM%20(v2).ecm.mp4/index.htmlGibbsSampling:://.tw/~tlkagk/courses/MLDS_2015_2/Lecture/MRF%20(v2).ecm.mp4/index.htmlOutlook:NIPS2016Tutorial:GenerativeAdversarialNetworksAuthor:IanGoodfellowPaper:s:///abs/1701.00160Video:YoucanfindtipsfortrainingGANhere:s://github/soumith/ganhacksReviewGenerationDrawing?WritingPoems?Review:Auto-encoderAscloseaspossibleNNEncoderNNDecodercodeNNDecodercodeRandomlygenerateavectorascodeImage?Review:Auto-encoderNNDecodercode2D-1.51.5
NNDecoder
NNDecoderReview:Auto-encoder-1.51.5NNEncoderNNDecodercodeinputoutputAuto-encoderVAENNEncoderinputNNDecoderoutputm1m2m3
Fromanormaldistribution
X+Minimizereconstructionerror
exp
MinimizeAuto-EncodingVariationalBayes,s:///abs/1312.6114ProblemsofVAEItdoesnotreallytrytosimulaterealimagesNNDecodercodeOutputAscloseaspossibleOnepixeldifferencefromthetargetOnepixeldifferencefromthetargetRealisticFakeTheevolutionofgenerationNNGeneratorv1Discri-minatorv1Realimages:NNGeneratorv2Discri-minatorv2NNGeneratorv3Discri-minatorv3BinaryClassifierTheevolutionofgenerationNNGeneratorv1Discri-minatorv1Realimages:NNGeneratorv2Discri-minatorv2NNGeneratorv3Discri-minatorv3GAN-DiscriminatorNNGeneratorv1Realimages:Discri-minatorv1image1/0(realorfake)SomethinglikeDecoderinVAERandomlysampleavector11110000GAN-GeneratorDiscri-minatorv1NNGeneratorv1Randomlysampleavector0.13UpdatingtheparametersofgeneratorTheoutputbeclassifiedas“real”(ascloseto1aspossible)Generator+Discriminator=anetworkUsinggradientdescenttoupdatetheparametersinthegenerator,butfixthediscriminator1.0v2GAN
–二次元人物頭像鍊成DCGAN:s://github/carpedm20/DCGAN-tensorflowGAN
–二次元人物頭像鍊成100roundsGAN
–二次元人物頭像鍊成1000roundsGAN
–二次元人物頭像鍊成2000roundsGAN
–二次元人物頭像鍊成5000roundsGAN
–二次元人物頭像鍊成10,000roundsGAN
–二次元人物頭像鍊成20,000roundsGAN
–二次元人物頭像鍊成50,000roundsBasicIdeaofGANMaximumLikelihoodEstimation
Likelihoodofgeneratingthesamples
MaximumLikelihoodEstimation
Itisdifficulttocomputethelikelihood.
BasicIdeaofGANGeneratorGGisafunction,inputz,outputxGivenapriordistributionPprior(z),aprobabilitydistributionPG(x)isdefinedbyfunctionGDiscriminatorDDisafunction,inputx,outputscalarEvaluatethe“difference”betweenPG(x)andPdata(x)ThereisafunctionV(G,D).
HardtolearnbymaximumlikelihoodBasicIdea
GivenG,whatistheoptimalD*maximizingGivenx,theoptimalD*maximizing
AssumethatD(x)canhaveanyvaluehere
Givenx,theoptimalD*maximizingFindD*maximizing:
aDbD0<<1
22
Jensen-Shannondivergence
Intheend……
0<<log2
Algorithm
Algorithm
DecreaseJS
divergence(?)DecreaseJS
divergence(?)Algorithm
DecreaseJS
divergence(?)
smaller
……
Don’tupdateGtoomuchInpractice…
Maximize
MinimizeCross-entropyBinaryClassifierOutputisD(x)Minimize–logD(x)IfxisapositiveexampleIfxisanegativeexampleMinimize–log(1-D(x))
PositiveexamplesNegativeexamples
MaximizeMinimize
MinimizeCross-entropyBinaryClassifierOutputisf(x)Minimize–logf(x)IfxisapositiveexampleIfxisanegativeexampleMinimize–log(1-f(x))
AlgorithmRepeatktimesLearningDLearningG
CanonlyfindlowerfoundofOnlyOnceObjectiveFunctionforGenerator
inRealImplementation
Realimplementation:labelxfromPGaspositive
SlowatthebeginningDemoThecodeusedindemofrom:s://github/osh/KerasGAN/blob/master/MNIST_CNN_GAN_v2.ipynbIssueaboutEvaluatingtheDivergenceEvaluatingJSdivergenceMartinArjovsky,
LéonBottou,TowardsPrincipledMethodsforTrainingGenerativeAdversarialNetworks,
2017,arXivpreprintEvaluatingJSdivergenceJSdivergenceestimatedbydiscriminatortellinglittleinformations:///abs/1701.07875WeakGeneratorStrongGeneratorDiscriminator
Reason1.Approximatebysampling
10=0
log2Weakenyourdiscriminator?CanweakdiscriminatorcomputeJSdivergence?Discriminator
Reason2.thenatureofdata
10=0
log2
UsuallytheydonothaveanyoverlapEvaluationBetterEvaluation
Better…………Notreallybetter……AddNoiseAddsomeartificialnoisetotheinputsofdiscriminatorMakethelabelsnoisyforthediscriminator
DiscriminatorcannotperfectlyseparaterealandgenerateddataNoisesdecayovertimeModeCollapseModeCollapseDataDistributionGeneratedDistributionModeCollapse
Whatwewant…Inreality…FlawinOptimization?
ModifiedfromIanGoodfellow’stutorial
Thismaynotbethereason(basedonIanGoodfellow’stutorial)SomanyGANs……ModifyingtheOptimizationofGANfGANWGANLeast-squareGANLossSensitiveGANEnergy-basedGANBoundary-seekingGANUnrollGAN……DifferentStructurefromtheOriginalGANConditionalGANSemi-supervisedGANInfoGANBiGANCycleGANDiscoGANVAE-GAN……ConditionalGANMotivationGeneratorScottReed,ZeynepAkata,XinchenYan,LajanugenLogeswaran,BerntSchiele,HonglakLee,“GenerativeAdversarialText-to-ImageSynthesis”,ICML2016TextImageScottReed,
ZeynepAkata,
SantoshMohan,
SamuelTenka,
BerntSchiele,
HonglakLee,“LearningWhatandWheretoDraw”,NIPS2016HanZhang,
TaoXu,
HongshengLi,
ShaotingZhang,
XiaoleiHuang,
XiaogangWang,
DimitrisMetaxas,“StackGAN:TexttoPhoto-realisticImageSynthesiswithStackedGenerativeAdversarialNetworks”,arXivprepring,2016MotivationChallengeNNTextImage(apoint,notadistribution)Text:“train”NN
output
ConditionalGANG
conditionPriordistributionLearntoapproximateP(x|c)D(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑夹具施工方案(3篇)
- pap卷材施工方案(3篇)
- 拆除天花施工方案(3篇)
- 数据资产制度
- 罕见肿瘤的双免疫治疗策略探讨
- 2026广东嘉城建设集团有限公司选聘职业经理人1人备考题库及1套完整答案详解
- 2026江苏南京医科大学招聘24人备考题库(第一批)完整答案详解
- 2026广东茂名市电白区城镇公益性岗位招聘2人备考题库(第一批)带答案详解
- 销售业务员提成制度
- 罕见肿瘤的个体化治疗生活质量干预措施与患者心理需求
- 2026年科研仪器预约使用平台服务协议
- 2025年度精神科护士述职报告
- 2026陕西省森林资源管理局局属企业招聘(55人)参考题库及答案1套
- 免疫治疗相关甲状腺功能亢进的分级
- 浙江省杭州市拱墅区2024-2025学年四年级上册期末考试数学试卷(含答案)
- 2024-2025学年七上期末数学试卷(原卷版)
- 2025-2026学年苏教版五年级上册数学期末必考题检测卷(含答案)
- 新《增值税法实施条例》逐条解读课件
- 2026年广西职教高考5套语文模拟试卷试题及逐题答案解释和5套试题的综合分析报告
- 福建省福州市2024-2025学年高二上学期期末质量检测化学试卷(含答案)
- 泌尿系统疾病诊治
评论
0/150
提交评论