




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
GenerativeAdversarialNetwork(GAN)RestrictedBoltzmannMachine:://.tw/~tlkagk/courses/MLDS_2015_2/Lecture/RBM%20(v2).ecm.mp4/index.htmlGibbsSampling:://.tw/~tlkagk/courses/MLDS_2015_2/Lecture/MRF%20(v2).ecm.mp4/index.htmlOutlook:NIPS2016Tutorial:GenerativeAdversarialNetworksAuthor:IanGoodfellowPaper:s:///abs/1701.00160Video:YoucanfindtipsfortrainingGANhere:s://github/soumith/ganhacksReviewGenerationDrawing?WritingPoems?Review:Auto-encoderAscloseaspossibleNNEncoderNNDecodercodeNNDecodercodeRandomlygenerateavectorascodeImage?Review:Auto-encoderNNDecodercode2D-1.51.5
NNDecoder
NNDecoderReview:Auto-encoder-1.51.5NNEncoderNNDecodercodeinputoutputAuto-encoderVAENNEncoderinputNNDecoderoutputm1m2m3
Fromanormaldistribution
X+Minimizereconstructionerror
exp
MinimizeAuto-EncodingVariationalBayes,s:///abs/1312.6114ProblemsofVAEItdoesnotreallytrytosimulaterealimagesNNDecodercodeOutputAscloseaspossibleOnepixeldifferencefromthetargetOnepixeldifferencefromthetargetRealisticFakeTheevolutionofgenerationNNGeneratorv1Discri-minatorv1Realimages:NNGeneratorv2Discri-minatorv2NNGeneratorv3Discri-minatorv3BinaryClassifierTheevolutionofgenerationNNGeneratorv1Discri-minatorv1Realimages:NNGeneratorv2Discri-minatorv2NNGeneratorv3Discri-minatorv3GAN-DiscriminatorNNGeneratorv1Realimages:Discri-minatorv1image1/0(realorfake)SomethinglikeDecoderinVAERandomlysampleavector11110000GAN-GeneratorDiscri-minatorv1NNGeneratorv1Randomlysampleavector0.13UpdatingtheparametersofgeneratorTheoutputbeclassifiedas“real”(ascloseto1aspossible)Generator+Discriminator=anetworkUsinggradientdescenttoupdatetheparametersinthegenerator,butfixthediscriminator1.0v2GAN
–二次元人物頭像鍊成DCGAN:s://github/carpedm20/DCGAN-tensorflowGAN
–二次元人物頭像鍊成100roundsGAN
–二次元人物頭像鍊成1000roundsGAN
–二次元人物頭像鍊成2000roundsGAN
–二次元人物頭像鍊成5000roundsGAN
–二次元人物頭像鍊成10,000roundsGAN
–二次元人物頭像鍊成20,000roundsGAN
–二次元人物頭像鍊成50,000roundsBasicIdeaofGANMaximumLikelihoodEstimation
Likelihoodofgeneratingthesamples
MaximumLikelihoodEstimation
Itisdifficulttocomputethelikelihood.
BasicIdeaofGANGeneratorGGisafunction,inputz,outputxGivenapriordistributionPprior(z),aprobabilitydistributionPG(x)isdefinedbyfunctionGDiscriminatorDDisafunction,inputx,outputscalarEvaluatethe“difference”betweenPG(x)andPdata(x)ThereisafunctionV(G,D).
HardtolearnbymaximumlikelihoodBasicIdea
GivenG,whatistheoptimalD*maximizingGivenx,theoptimalD*maximizing
AssumethatD(x)canhaveanyvaluehere
Givenx,theoptimalD*maximizingFindD*maximizing:
aDbD0<<1
22
Jensen-Shannondivergence
Intheend……
0<<log2
Algorithm
Algorithm
DecreaseJS
divergence(?)DecreaseJS
divergence(?)Algorithm
DecreaseJS
divergence(?)
smaller
……
Don’tupdateGtoomuchInpractice…
Maximize
MinimizeCross-entropyBinaryClassifierOutputisD(x)Minimize–logD(x)IfxisapositiveexampleIfxisanegativeexampleMinimize–log(1-D(x))
PositiveexamplesNegativeexamples
MaximizeMinimize
MinimizeCross-entropyBinaryClassifierOutputisf(x)Minimize–logf(x)IfxisapositiveexampleIfxisanegativeexampleMinimize–log(1-f(x))
AlgorithmRepeatktimesLearningDLearningG
CanonlyfindlowerfoundofOnlyOnceObjectiveFunctionforGenerator
inRealImplementation
Realimplementation:labelxfromPGaspositive
SlowatthebeginningDemoThecodeusedindemofrom:s://github/osh/KerasGAN/blob/master/MNIST_CNN_GAN_v2.ipynbIssueaboutEvaluatingtheDivergenceEvaluatingJSdivergenceMartinArjovsky,
LéonBottou,TowardsPrincipledMethodsforTrainingGenerativeAdversarialNetworks,
2017,arXivpreprintEvaluatingJSdivergenceJSdivergenceestimatedbydiscriminatortellinglittleinformations:///abs/1701.07875WeakGeneratorStrongGeneratorDiscriminator
Reason1.Approximatebysampling
10=0
log2Weakenyourdiscriminator?CanweakdiscriminatorcomputeJSdivergence?Discriminator
Reason2.thenatureofdata
10=0
log2
UsuallytheydonothaveanyoverlapEvaluationBetterEvaluation
Better…………Notreallybetter……AddNoiseAddsomeartificialnoisetotheinputsofdiscriminatorMakethelabelsnoisyforthediscriminator
DiscriminatorcannotperfectlyseparaterealandgenerateddataNoisesdecayovertimeModeCollapseModeCollapseDataDistributionGeneratedDistributionModeCollapse
Whatwewant…Inreality…FlawinOptimization?
ModifiedfromIanGoodfellow’stutorial
Thismaynotbethereason(basedonIanGoodfellow’stutorial)SomanyGANs……ModifyingtheOptimizationofGANfGANWGANLeast-squareGANLossSensitiveGANEnergy-basedGANBoundary-seekingGANUnrollGAN……DifferentStructurefromtheOriginalGANConditionalGANSemi-supervisedGANInfoGANBiGANCycleGANDiscoGANVAE-GAN……ConditionalGANMotivationGeneratorScottReed,ZeynepAkata,XinchenYan,LajanugenLogeswaran,BerntSchiele,HonglakLee,“GenerativeAdversarialText-to-ImageSynthesis”,ICML2016TextImageScottReed,
ZeynepAkata,
SantoshMohan,
SamuelTenka,
BerntSchiele,
HonglakLee,“LearningWhatandWheretoDraw”,NIPS2016HanZhang,
TaoXu,
HongshengLi,
ShaotingZhang,
XiaoleiHuang,
XiaogangWang,
DimitrisMetaxas,“StackGAN:TexttoPhoto-realisticImageSynthesiswithStackedGenerativeAdversarialNetworks”,arXivprepring,2016MotivationChallengeNNTextImage(apoint,notadistribution)Text:“train”NN
output
ConditionalGANG
conditionPriordistributionLearntoapproximateP(x|c)D(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 文库发布:班会课件
- 文库发布:急诊科课件
- 房间课件内容
- 敬畏的课件教学课件
- 敬畏主题班会课件
- 散步课件介绍
- 散步的说课课件
- 音乐多媒体课件教学
- 16雷雨教学课件
- 教育的作文故事课件
- 轨道交通信号工国家职业技能标准
- 贵州大方富民村镇银行股份有限公司(筹)招聘上岸提分题库3套【500题带答案含详解】
- GB/T 5470-2008塑料冲击法脆化温度的测定
- GB/T 40998-2021变性淀粉中羟丙基含量的测定分光光度法
- GB/T 31848-2015汽车贴膜玻璃贴膜要求
- GB/T 18884.2-2015家用厨房设备第2部分:通用技术要求
- GB/T 12239-2008工业阀门金属隔膜阀
- 行政法培训讲义课件
- DB32T 4174-2021 城市居住区和单位绿化标准
- 基本原理与性能特点多自由度电磁轴承课件
- 北京输变电工程标准工艺应用图册(图文并茂)
评论
0/150
提交评论