版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古赤峰市翁牛特旗乌丹六中学2023年八上数学期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.要使分式的值为0,你认为x可取得数是A.9 B.±3 C.﹣3 D.32.下列运算正确的是()A.a2+a3=2a5 B.a6÷a2=a3C.a2•a3=a5 D.(2ab2)3=6a3b63.如图,菱形的对角线长分别为,则这个菱形面积为()A. B. C. D.4.工人师傅经常利用角尺平分一个任意角,如图所示,∠AOB是一个任意角,在边OA,OB上分别取OD=OE,移动角尺,使角尺两边相同的刻度分别与D,E重合,这时过角尺顶点P的射线OP就是∠AOB的平分线.你认为工人师傅在此过程中用到的三角形全等的判定方法是这种作法的道理是(
)A.SAS B.ASA C.AAS D.SSS5.已知点P(0,m)在y轴的负半轴上,则点M(﹣m,1)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.如果x2+(m-2)x+9是个完全平方式,那么m的值是(A.8B.-4C.±8D.8或-47.已知二元一次方程组,则的值为()A.2 B. C.4 D.8.如图,在△ABC和△DCB中,AC与BD相交于点O,下列四组条件中,不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.AB=DC,∠ABC=∠DCBC.BO=CO,∠A=∠D D.∠ABD=∠DCA,∠A=∠D9.下列交通标志图案中,是中心对称图形的是()A. B. C. D.10.某单位向一所希望小学赠送1080本课外书,现用A、B两种不同的包装箱进行包装,单独使用B型包装箱比单独使用A型包装箱可少用6个;已知每个B型包装箱比每个A型包装箱可多装15本课外书.若设每个A型包装箱可以装书x本,则根据题意列得方程为()A. B.C. D.二、填空题(每小题3分,共24分)11.如图,在△ABC中,∠C=90°,AD平分∠BAC,BC=15,BD:CD=3:2,则点D到AB的距离是________.12.如图,小明站在离水面高度为8米的岸上点处用绳子拉船靠岸,开始时绳子的长为17米,小明以1米每秒的速度收绳,7秒后船移动到点的位置,问船向岸边移动了______米(的长)(假设绳子是直的).13.在平面直角坐标系xOy中,O为坐标原点,A是反比例函数图象上的一点,AB垂直y轴,垂足为点B,那么的面积为___________.14.一个等腰三角形的两边长分别为4和8,则这个等腰三角形的周长是__________.15.在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,则AE=cm.16.如右图,一只蚂蚁沿着边长为2的正方体表面从点A出发,经过3个面爬到点B,如果它运动的路径是最短的,则此最短路径的长为.17.在平面直角坐标系xOy中,已知点A(0,1),B(1,2),点P在x轴上运动,当点P到A、B两点距离之差的绝对值最大时,点P的坐标是_______.18.数据-3、-1、0、4、5的方差是_________.三、解答题(共66分)19.(10分)四边形ABCD中,∠ABC+∠D=180°,AC平分∠BAD,CE⊥AB于E,CF⊥AD于F.求证:(1)△CBE≌△CDF;(2)AB+DF=AF.20.(6分)已知2是的平方根,是的立方根,求的值.21.(6分)如图,在△ABC中,∠B=60°,D、E分别为AB、BC上的点,且AE、CD相交于点F.若AE、CD分别为△ABC的角平分线.(1)求∠AFC的度数;(2)若AD=3,CE=2,求AC的长.22.(8分)在平面直角坐标中,四边形为矩形,如图1,点坐标为,点坐标为,已知满足.(1)求的值;(2)①如图1,分别为上一点,若,求证:;②如图2,分别为上一点,交于点.若,,则___________(3)如图3,在矩形中,,点在边上且,连接,动点在线段是(动点与不重合),动点在线段的延长线上,且,连接交于点,作于.试问:当在移动过程中,线段的长度是否发生变化?若不变求出线段的长度;若变化,请说明理由.23.(8分)如图,已知等腰三角形中,,,点是内一点,且,点是外一点,满足,且平分,求的度数24.(8分)一辆货车从甲地匀速驶往乙地,到达乙地停留一段时间后,沿原路以原速返回甲地.货车出发一段时间后,一辆轿车以的速度从甲地匀速驶往乙地.货车出发时,两车在距离甲地处相遇,货车回到甲地的同时轿车也到达乙地.货车离甲地的距离、轿车离甲地的距离分别与货车所用时间之间的函数图像如图所示.(1)货车的速度是______,的值是______,甲、乙两地相距______;(2)图中点表示的实际意义是:______.(3)求与的函数表达式,并求出的值;(4)直接写出货车在乙地停留的时间.25.(10分)设,则的最小值为______.26.(10分)在平面直角坐标系中,有点,.(1)若线段轴,求点、的坐标;(2)当点到轴的距离与点到轴的距离相等时,求点所在的象限.
参考答案一、选择题(每小题3分,共30分)1、D【解析】试题分析:根据分式分子为0分母不为0的条件,要使分式的值为0,则必须.故选D.2、C【分析】原式各项计算得到结果,即可作出判断.【详解】A.原式不能合并,错误;B.原式=a4,错误;C.原式=a5,正确;D.原式=8a3b6,错误,故选C.3、A【解析】直接根据菱形的面积等于它的两条对角线的乘积的一半求出答案即可.【详解】∵AC=5cm,BD=8cm,∴菱形的面积=×5×8=10cm1.故选:A.【点睛】本题考查了菱形的性质,熟知菱形ABCD的面积等于对角线乘积的一半是解题的关键.4、D【分析】由三边对应相等得△DOF≌△EOF,即由SSS判定两个三角形全等.做题时要根据已知条件结合判定方法逐个验证.【详解】依题意知,在△DOF与△EOF中,,∴△DOF≌△EOF(SSS),∴∠AOF=∠BOF,即OF即是∠AOB的平分线.故选D.【点睛】本题考查了全等三角形的判定及性质.要熟练掌握确定三角形的判定方法,利用数学知识解决实际问题是一种重要的能力,要注意培养.5、A【分析】根据y轴的负半轴上的点横坐标等于零,纵坐标小于零,可得m的值,再根据不等式的性质解答.【详解】解:∵点P(0,m)在y轴的负半轴上,∴m<0,∴﹣m>0,∴点M(﹣m,1)在第一象限,故选:A.【点睛】本题主要考查平面直角坐标系有关的概念和不等式及其性质.解题的关键是掌握y轴的负半轴上的点的特点.6、D【解析】试题解析:∵x2+(m-2)x+9是一个完全平方式,∴(x±3)2=x2±2(m-2)x+9,∴2(m-2)=±12,∴m=8或-1.故选D.7、D【分析】解方程组求出x、y的值,再把所求式子化简后代入即可.【详解】解:
②−①×2得,6y=9,解得,
把代入①得,,解得,
∴,
故选:D.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.8、D【分析】根据全等三角形的判定定理,逐一判断选项,即可得到结论.【详解】∵AB=DC,AC=BD,BC=CB,∴△ABC≌△DCB(SSS),故A选项正确;∵AB=DC,∠ABC=∠DCB,BC=CB,∴△ABC≌△DCB(SAS),故B选项正确;∵BO=CO,∴∠ACB=∠DBC,∵BC=CB,∠A=∠D∴△ABC≌△DCB(AAS),故C选项正确;∵∠ABD=∠DCA,∠A=∠D,BC=CB,不能证明△ABC≌△DCB,故D选项错误;故选:D.【点睛】本题主要考查三角形全等的判定定理,掌握SSS,SAS,AAS判定三角形全等,是解题的关键.9、C【分析】根据中心对称图形的概念,分别判断即可.【详解】解:A、B、D不是中心对称图形,C是中心对称图形.故选C.点睛:本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.10、C【解析】设每个A型包装箱可以装书x本,则每个B型包装箱可以装书(x+15)本,根据单独使用B型包装箱比单独使用A型包装箱可少用6个,列方程得:,故选C.二、填空题(每小题3分,共24分)11、6【分析】过点D作DE⊥AB于E,根据比例求出CD,再根据角平分线上的点到角的两边的距离相等可得DE=CD.【详解】过点D作DE⊥AB于E,∵BC=15,BD:CD=3:2,∴∵,AD平分∠BAC,∴DE=CD=6.故答案为6.【点睛】考查角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键.12、1【分析】在Rt△ABC中,利用勾股定理计算出AB长,再根据题意可得CD长,然后再次利用勾股定理计算出AD长,再利用BD=AB-AD可得BD长.【详解】在Rt△ABC中:
∵∠CAB=10°,BC=17米,AC=8米,
∴(米),∵此人以1米每秒的速度收绳,7秒后船移动到点D的位置,
∴(米),
∴(米),∴(米),
答:船向岸边移动了1米.
故答案为:1.【点睛】本题主要考查了勾股定理的应用,关键是掌握从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.13、1【分析】设点A的坐标是,然后根据三角形的面积公式解答即可.【详解】解:设点A的坐标是,∵AB垂直y轴,∴,∴的面积=.故答案为:1.【点睛】本题考查了反比例函数系数k的几何意义,属于基础题型,熟练掌握反比例函数系数k的几何意义是关键.14、1【分析】题目给出等腰三角形有两条边长为4和8,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】∵4+4=8∴腰的长不能为4,只能为8∴等腰三角形的周长=2×8+4=1,故答案为1.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.15、1.【解析】∵∠ACB=90°,∴∠ECF+∠BCD=90°.∵CD⊥AB,∴∠BCD+∠B=90°.∴∠ECF=∠B,在△ABC和△FEC中,∵∠ECF=∠B,EC=BC,∠ACB=∠FEC=90°,∴△ABC≌△FEC(ASA).∴AC=EF.∵AE=AC﹣CE,BC=2cm,EF=5cm,∴AE=5﹣2=1cm.16、【解析】试题分析:如图,将正方体的三个侧面展开,连结AB,则AB最短,.考点:1.最短距离2.正方体的展开图17、(﹣1,0)【详解】解:由三角形两边之差小于第三边可知,当A、B、P三点不共线时,由三角形三边关系|PA﹣PB|<AB;当A、B、P三点共线时,∵A(0,1),B(1,2)两点都在x轴同侧,∴|PA﹣PB|=AB.∴|PA﹣PB|≤AB.∴本题中当点P到A、B两点距离之差的绝对值最大时,点P在直线AB上.设直线AB的解析式为y=kx+b,∵A(0,1),B(1,2),∴,解得.∴直线AB的解析式为y=x+1.令y=0,得0=x+1,解得x=﹣1.∴点P的坐标是(﹣1,0).故答案为:(﹣1,0).18、9.1.【分析】根据公式求出这组数据的平均数与方差.【详解】这组数据的平均数是:方差是.故答案为:9.1.【点睛】本题考查了求数据的平均数与方差的问题,解题时利用平均数与方差的公式进行计算即可.三、解答题(共66分)19、(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)根据角平分线的性质可得到CE=CF,根据余角的性质可得到∠EBC=∠D,已知CE⊥AB,CF⊥AD,从而利用AAS即可判定△CBE≌△CDF.(2)已知EC=CF,AC=AC,则根据HL判定△ACE≌△ACF得AE=AF,最后证得AB+DF=AF即可.试题解析:证明:(1)∵AC平分∠BAD,CE⊥AB,CF⊥AD∴CE=CF∵∠ABC+∠D=180°,∠ABC+∠EBC=180°∴∠EBC=∠D在△CBE与△CDF中,,∴△CBE≌△CDF;(2)在Rt△ACE与Rt△ACF中,∴△ACE≌△ACF∴AE=AF∴AB+DF=AB+BE=AE=AF.20、【分析】根据平方根、立方根的定义列出方程组,即可求解.【详解】解:由题意可知①+②可得,【点睛】此题主要考查实数的性质,解题的关键是熟知平方根、立方根的定义.21、(1)120°;(2)1【分析】(1)根据角平分线的定义、三角形内角和定理求解;(2)在AC上截取AG=AD=3,连接FG,证明△ADF≌△AGF,△CGF≌△CEF,根据全等三角形性质解答.【详解】解:(1)∵AE、CD分别为△ABC的角平分线,∴∠FAC=∠BAC,∠FCA=∠BCA.∵∠B=60°,∴∠BAC+∠BCA=120°.∴∠AFC=180﹣∠FAC﹣∠FCA=180﹣(∠BAC+∠BCA)=120°(2)如图,在AC上截取AG=AD=3,连接FG,∵AE、CD分别为△ABC的角平分线,∴∠FAG=∠FAD,∠FCG=∠FCE,∵∠AFC=120°,∴∠AFD=∠CFE=60°.在△ADF和△AGF中,,∴△ADF≌△AGF(SAS).∴∠AFD=∠AFG=60°,∠GFC=∠CFE=60°.在△CGF和△CEF中,,∴△CGF≌△CEF(ASA).∴CG=CE=2,∴AC=AG+CG=1.【点睛】本题主要考查全等三角形的判定方法(“SAS”、“ASA”)和全等三角形的性质、角平分线的性质及三角形内角和定理,熟练掌握这些知识点是解题的关键.22、(1)m=5,n=5;(2)①见解析;②;(3)当P、Q在移动过程中线段MN的长度不会发生变化,它的长度为.【分析】(1)利用非负数的性质即可解决问题.(2)①作辅助线,构建两个三角形全等,证明△COE≌△CNQ和△ECP≌△QCP,由PQ=PE=OE+OP,得出结论;②作辅助线,构建平行四边形和全等三角形,可得平行四边形CSRE和平行四边形CFGH,则CE=SR,CF=GH,证明△CEN≌△CE′O和△E′CF≌△ECF,得EF=E′F,设EN=x,在Rt△MEF中,根据勾股定理列方程求出EN的长,再利用勾股定理求CE,则SR与CE相等,问题得解;(3)在(1)的条件下,当P、Q在移动过程中线段MN的长度不会发生变化,求出MN的长即可;如图4,过P作PD∥OQ,证明△PDF是等腰三角形,由三线合一得:DM=FD,证明△PND≌△QNA,得DN=AD,则MN=AF,求出AF的长即可解决问题.【详解】解:(1)∵,∴n−5=0,5−m=0,∴m=5,n=5;(2)①如图1中,在PO的延长线上取一点E,使NQ=OE,∵CN=OM=OC=MN,∠COM=90°,∴四边形OMNC是正方形,∴CO=CN,∵∠EOC=∠N=90°,∴△COE≌△CNQ(SAS),∴CQ=CE,∠ECO=∠QCN,∵∠PCQ=45°,∴∠QCN+∠OCP=90°−45°=45°,∴∠ECP=∠ECO+∠OCP=45°,∴∠ECP=∠PCQ,∵CP=CP,∴△ECP≌△QCP(SAS),∴EP=PQ,∵EP=EO+OP=NQ+OP,∴PQ=OP+NQ;②如图2中,过C作CE∥SR,在x轴负半轴上取一点E′,使OE′=EN,得平行四边形CSRE,且△CEN≌△CE′O,则CE=SR,过C作CF∥GH交OM于F,连接FE,得平行四边形CFGH,则CF=GH=,∵∠SDG=135°,∴∠SDH=180°−135°=45°,∴∠FCE=∠SDH=45°,∴∠NCE+∠OCF=45°,∵△CEN≌△CE′O,∴∠E′CO=∠ECN,CE=CE′,∴∠E′CF=∠E′CO+∠OCF=45°,∴∠E′CF=∠FCE,∵CF=CF,∴△E′CF≌△ECF,∴E′F=EF在Rt△COF中,OC=5,FC=,由勾股定理得:OF=,∴FM=5−=,设EN=x,则EM=5−x,FE=E′F=x+,则(x+)2=()2+(5−x)2,解得:x=,∴EN=,由勾股定理得:CE=,∴SR=CE=;(3)当P、Q在移动过程中线段MN的长度不会发生变化.理由:如图3中,过P作PD∥OQ,交AF于D.∵OF=OA,∴∠OFA=∠OAF=∠PDF,∴PF=PD,∵PF=AQ,∴PD=AQ,∵PM⊥AF,∴DM=FD,∵PD∥OQ,∴∠DPN=∠PQA,∵∠PND=∠QNA,∴△PND≌△QNA,∴DN=AN,∴DN=AD,∴MN=DM+DN=DF+AD=AF,∵OF=OA=5,OC=3,∴CF=4,∴BF=BC−CF=5−4=1,∴AF=,∴MN=AF=,∴当P、Q在移动过程中线段MN的长度不会发生变化,它的长度为.【点睛】本题是四边形与动点问题的综合题,考查了矩形、正方形、全等三角形等图形的性质与判定,非负数的性质以及勾股定理等;知识点较多,综合性强,第(2)问中的两个问题思路一致:在正方形外构建与△CNQ全等的三角形,可截取OE=NQ,也可以将△CNQ绕点C顺时针旋转90°得到,再证明另一对三角形全等,得出结论,是常考题型.23、28°.【分析】连接EC,根据题目已知条件可证的△ACE≌△BCE,故得到∠BCE=∠ACE,再证△BDE≌△BCE,可得到∠ECB=∠EDB,利用条件得到∠ACB=56°,从而得到∠BDE的度数.【详解】解:连接EC,如图所示∵在△ACE和△BCE中∴△ACE≌△BCE∴∠BCE=∠ACE∵BE平分∠DBC∴∠DBE=∠EBC∵CA=CB,BD=AC∴CB=DB在△BDE和△BCE中∴△BDE≌△BCE∴∠ECB=∠EDB∵∠BAC=62°,AC=BC∴∠ACB=180°-62°×2=56°∴∠BCE=∠ACE=∠EDB=56°÷2=28°∴∠EDB=28°【点睛】本题主要考查的是全等三角形的判定以及全等三角形的性质,正确的运用全等三角形的判定方法和性质是解题的关键.24、(1)80;9;400;(2)货车出发后,轿车与货车在距甲地处相遇;(3);(4)货车在乙地停留.【分析】(1)根据函数图象中的数据可知货车2小时行驶的路程是160km,从而可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度土地开发权转让合同附规划设计及施工许可
- 施工合同签订及履行制度
- 教育机构的字体运用规范
- 远程教育对学习困难学生的支持研究
- 幼儿园燃气泄漏应急预案
- 上海市某物流有限公司劳动合同
- 个人委托代理合同范本示例
- 三孩子离婚赡养费合同范本
- 二手物品买卖合同范文
- 个人住房抵押贷款合同范本大全
- 沙发市场需求与消费特点分析
- 丰顺县县级集中式饮用水水源地基础状况调查和风险评估报告
- 重庆市2023-2024学年七年级上学期期末考试数学试题(含答案)
- 《七律二首 送瘟神》教案- 2023-2024学年高教版(2023)中职语文职业模块
- 八年级语文上册《作文》专项测试卷及答案
- 2024年中考语文满分作文6篇(含题目)
- 2024年安全员之江苏省C2证(土建安全员)题库与答案
- 第一节-货币资金资料讲解
- 2024年华侨、港澳、台联考高考数学试卷含答案
- 工程造价咨询服务投标方案(技术方案)
- 驾驶员安全行车考核奖惩制度(3篇)
评论
0/150
提交评论