版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
钦州市重点中学2023-2024学年高一上数学期末统考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若函数取最小值时,则()A. B.C. D.2.已知集合,集合为整数集,则A. B.C. D.3.曲线与直线在轴右侧的交点按横坐标从小到大依次记为,,,,,…,则等于A. B.2C.3 D.4.若集合A={x|-2<x<1},B={x|x<-1或x>3},则A∩B=()A.{x|-2<x<-1} B.{x|-2<x<3}C.{x|-1<x<1} D.{x|1<x<3}5.下列函数在定义域内为奇函数,且有最小值的是A. B.C. D.6.下列命题中不正确的是()A.一组数据1,2,3,3,4,5的众数大于中位数B.数据6,5,4,3,3,3,2,2,2,1的分位数为5C.若甲组数据的方差为5,乙组数据为5,6,9,10,5,则这两组数据中较稳定的是乙D.为调查学生每天平均阅读时间,某中学从在校学生中,利用分层抽样的方法抽取初中生20人,高中生10人.经调查,这20名初中生每天平均阅读时间为60分钟,这10名高中生每天平均阅读时间为90分钟,那么被抽中的30名学生每天平均阅读时间为70分钟7.已知定义在上的函数满足:①的图像关于直线对称;②对任意的,,当时,不等式成立.令,,,则下列不等式成立的是()A. B.C. D.8.下列函数中,表示同一个函数的是A.与B.与C.与D.与9.如图,一质点在半径为1的圆O上以点为起点,按顺时针方向做匀速圆周运动,角速度为,5s时到达点,则()A.-1 B.C. D.10.若,,,则大小关系为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若函数在区间上单调递减,在上单调递增,则实数的取值范围是_________12.已知集合,则___________13.函数的定义域为________14.已知函数,若关于的方程在上有个不相等的实数根,则实数的取值范围是___________.15.在平面直角坐标系中,已知点A在单位圆上且位于第三象限,点A的纵坐标为,现将点A沿单位圆逆时针运动到点B,所经过的弧长为,则点B的坐标为___________.16.函数是幂函数,且当时,是减函数,则实数=_______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)记,已知函数为奇函数,求实数b的值;(2)求证:函数是上的减函数18.已知.(1)求的最小正周期;(2)求的单调增区间;(3)当时,求的值域.19.已知函数是定义域为R的奇函数.(1)求t的值,并写出的解析式;(2)判断在R上的单调性,并用定义证明;(3)若函数在上的最小值为,求k的值.20.已知集合,集合.(1)若,求和(2)若,求实数的取值范围.21.化简(1)(2)
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】利用辅助角公式化简整理,得到辅助角与的关系,利用三角函数的图像和性质分析函数的最值,计算正弦值即可.【详解】,其中,因为当时取得最小值,所以,故.故选:B.2、A【解析】,选A.【考点定位】集合的基本运算.3、B【解析】曲线与直线在轴右侧的交点按横坐标从小到大依次记为,曲线与直线在轴右侧的交点按横坐标转化为根,解简单三角方程可得对应的横坐标分别为,,故选B.【思路点睛】本题主要考查三角函数的图象以及简单的三角方程,属于中档题.解答本题的关键是将曲线与直线在轴右侧的交点按横坐标转化为根,可得或,令取特殊值即可求得,从而可得.4、A【解析】直接根据交集的定义即可得解.【详解】解:因为A={x|-2<x<1},B={x|x<-1或x>3},所以.故选:A.5、D【解析】选项A中,函数为奇函数,但无最小值,故满足题意选项B中,函数为偶函数,不合题意选项C中,函数为奇函数,但无最小值,故不合题意选项D中,函数,为奇函数,且有最小值,符合题意选D6、A【解析】由中位数以及众数判断A;由百分位数的定义计算判断B;计算乙组数据的方差判断C;计算被抽中的30名学生每天平均阅读时间从而判断D.【详解】对于A,中位数为和众数相等,故A错误;对于B,将该组数据从小到大排列为,,则该组数据的分位数为5,故B正确;对于C,乙组数据,方差为,则这两组数据中较稳定的是乙,故C正确;对于D,被抽中的30名学生每天平均阅读时间为,故D正确;故选:A7、D【解析】根据题意,分析可得的图象关于轴对称,结合函数的单调性定义分析可得函数在,上为增函数;结合函数的奇偶性可得在区间,上为减函数,由对数的运算性质可得,据此分析可得答案【详解】解:根据题意,函数的图象关于直线对称,则的图象关于轴对称,即函数为偶函数,又由对任意的,,,当时,不等式成立,则函数在,上为增函数,又由为偶函数,则在区间,上为减函数,,,,因为,则有,故有.故选:D8、D【解析】对于A,B,C三个选项中函数定义域不同,只有D中定义域和对应法则完全相同的函数,才是同一函数,即可得到所求结论【详解】对于A,的定义域为R,的定义域为,定义域不同,故不为同一函数;对于B,的定义域为,的定义域为,定义域不同,故不为同一函数;对于C,定义域为,的定义域为R,定义域不同,故不为同一函数;对于D,与定义域和对应法则完全相同,故选D.【点睛】本题考查同一函数的判断,注意运用只有定义域和对应法则完全相同的函数,才是同一函数,考查判断和运算能力,属于基础题9、C【解析】由正弦、余弦函数的定义以及诱导公式得出.【详解】设单位圆与轴正半轴的交点为,则,所以,,故.故选:C10、D【解析】取中间值0和1分别与这三个数比较大小,进而得出结论【详解】解:,,,,故选:D.【点睛】本题主要考查取中间值法比较数的大小,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】反比例函数在区间上单调递减,要使函数在区间上单调递减,则,还要满足在上单调递增,故求出结果【详解】函数根据反比例函数的性质可得:在区间上单调递减要使函数在区间上单调递减,则函数在上单调递增则,解得故实数的取值范围是【点睛】本题主要考查了函数单调性的性质,需要注意反比例函数在每个象限内是单调递减的,而在定义域内不是单调递减的12、【解析】根据集合的交集的定义进行求解即可【详解】当时,不等式不成立,当时,不等式成立,当时,不等式不成立,当时,不等式不成立,所以,故答案为:13、【解析】根据偶次方根被开方数为非负数、对数真数大于零列不等式组,解不等式组求得函数的定义域.【详解】依题意,解得,故函数的定义域为.故答案为.【点睛】本小题主要考查具体函数定义域的求法,属于基础题.14、【解析】数形结合,由条件得在上有个不相等的实数根,结合图象分析根的个数列不等式求解即可.【详解】作出函数图象如图所示:由,得,所以,且,若,即在上有个不相等的实数根,则或,解得.故答案为:【点睛】方法点睛:判定函数的零点个数的常用方法:(1)直接法:直接求解函数对应方程的根,得到方程的根,即可得出结果;(2)数形结合法:先令,将函数的零点个数,转化为对应方程的根,进而转化为两个函数图象的交点个数,结合图象,即可得出结果.15、【解析】设点A是角终边与单位圆的交点,根据三角函数的定义及平方关系求出,,再利用诱导公式求出,即可得出答案.【详解】解:设点A是角的终边与单位圆的交点,因为点A在单位圆上且位于第三象限,点A的纵坐标为,所以,,因为点A沿单位圆逆时针运动到点B,所经过的弧长为,所以,所以点的横坐标为,纵坐标为,即点B的坐标为.故答案为:.16、-1【解析】根据幂函数的定义,令m2﹣m﹣1=1,求出m的值,再判断m是否满足幂函数当x∈(0,+∞)时为减函数即可【详解】解:∵幂函数,∴m2﹣m﹣1=1,解得m=2,或m=﹣1;又x∈(0,+∞)时,f(x)为减函数,∴当m=2时,m2+m﹣3=3,幂函数为y=x3,不满足题意;当m=﹣1时,m2+m﹣3=0,幂函数为y=x﹣3,满足题意;综上,m=﹣1,故答案为﹣1【点睛】本题考查了幂函数的定义与图像性质的应用问题,解题的关键是求出符合题意的m值三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解析】(1)由奇函数性质列方程去求实数b的值即可解决;(2)以减函数定义去证明函数是上的减函数即可.【小问1详解】函数的定义域为,,∵为奇函数,,所以恒成立,即恒成立,解得,经检验时,为奇函数.故实数b的值为【小问2详解】设任意实数,则,因为,所以,,即又,则所以,即,所以函数是上的减函数18、(1)(2),(3)【解析】(1)利用降幂公式等化简可得,结合周期公式可得结果;(2)由,,解不等式可得增区间;(3)由的范围,得出的范围,根据正弦函数的性质即可得结果.【小问1详解】∴函数的最小正周期.【小问2详解】由,得,∴所求函数的单调递增区间为,.【小问3详解】∵,∴∴,,∴的值域为.19、(1)或,;(2)R上单调递增,证明见解析;(3)【解析】(1)是定义域为R的奇函数,利用奇函数的必要条件,求出的值,进而求出,验证是否为奇函数;(2)可判断在上为增函数,用函数的单调性定义加以证明,取两个不等的自变量,对应函数值做差,因式分解,判断函数值差的符号,即可证明结论;(3)由,换元令,,由(2)得,,根据条件转化为在最小值为-2,对二次函数配方,求出对称轴,分类讨论求出最小值,即可求解【详解】解:(1)因为是定义域为R的奇函数,所以,即,解得或,可知,此时满足,所以.(2)在R上单调递增.证明如下:设,则.因为,所以,所以,可得.因为当时,有,所以R单调递增.(3)由(1)可知,令,则,因为是增函数,且,所以.因为在上的最小值为,所以在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 上市公司员工购房合同范本
- 转口贸易合同中运输条款
- 办公大楼浮雕施工合同
- 物业公司财务内控手册
- 城市公园绿化招投标报名表
- 活动摄像租赁简易合同
- 餐饮KTV音响系统设备协议
- 航运服务招投标专用合同条款
- 体育馆消防工程合同
- 木材销售顾问招聘合同
- 《煤矿重大危险源评估报告》
- 职业生涯规划概述课件
- 人教版六年级数学上册《全册》完整版课件
- 九年级英语《Unit 6 When was it invented》说课稿
- 监控工程验收单-范本模板
- 陶行知与乡村教育智慧树知到期末考试答案2024年
- 2024届高考英语复习语法填空课件
- 原地8字舞龙课课件高一上学期体育与健康人教版
- MOOC 大学生创新创业热点问题-福建师范大学 中国大学慕课答案
- 如何有效应对学习中的困难和挑战
- 《说话要算数》示范课件第1课时
评论
0/150
提交评论