




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第第页七年级数学教学设计范例七班级数学教学设计1
平行线
[教学目标]
1.理解平行线的意义,了解同一平面内两条直线的位置关系;
2.理解并掌控平行公理及其推论的内容;
3.会依据几何语句画图,会用直尺和三角板画平行线;
4.了解“三线八角”并能在详细图形中找出同位角、内错角与同旁内角;
4.了解平行线在实际生活中的应用,能举例加以说明.
[教学重点与难点]
1.教学重点:平行线的概念与平行公理;
2.教学难点:对平行公理的理解.
[教学过程]
一、复习提问
相交线是如何定义的?
二、新课引入
平面内两条直线的位置关系除平行外,还有哪些呢?
制作教具,通过演示,得出平面内两条直线的位置关系及平行线的概念.
三、同一平面内两条直线的位置关系
1.平行线概念:在同一平面内,不相交的两条直线叫做平行线.直线a与b平行,记作a∥b.
(画出图形)
2.同一平面内两条直线的位置关系有两种:(1)相交;(2)平行.
3.对平行线概念的理解:
两个关键:一是“在同一个平面内”(举例说明);二是“不相交”.
一个前提:对两条直线而言.
4.平行线的画法
平行线的画法是几何画图的基本技能之一,在以后的学习中,会常常遇到画平行线的问题.方法为:一“落”(三角板的一边落在已知直线上),二“靠”(用直尺紧靠三角板的另一边),三“移”(沿直尺移动三角板,直至落在已知直线上的三角板的一边经过已知点),四“画”(沿三角板过已知点的边画直线).
四、平行公理
1.利用前面的教具,说明“过直线外一点有且只有一条直线与已知直线平行”.
2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.
提问垂线的性质,并进行比较.
3.平行公理推论:假如两条直线都与第三条直线平行,那么这两条直线也相互平行.即:假如b∥a,c∥a,那么b∥c.
五、三线八角
由前面的教具演示引出.
如图,直线a,b被直线c所截,形成的8个角中,其中同位角有4对,内错角有2对,同旁内角有2对.
六、课堂练习
1.在同一平面内,两条直线可能的位置关系是.
2.在同一平面内,三条直线的交点个数可能是.
3.以下说法正确的选项是()
A.经过一点有且只有一条直线与已知直线平行
B.经过一点有很多条直线与已知直线平行
C.经过一点有一条直线与已知直线平行
D.经过直线外一点有且只有一条直线与已知直线平行
4.假设∠与∠是同旁内角,且∠=50°,那么∠的度数是()
A.50°B.130°C.50°或130°D.不能确定
5.以下命题:(1)长方形的对边所在的直线平行;(2)经过一点可作一条直线与已知直线平行;(3)在同一平面内,假如两条直线不平行,那么这两条直线相交;(4)经过一点可作一条直线与已知直线垂直.其中正确的个数是()
A.1B.2C.3D.4
6.如图,直线AB,CD被DE所截,那么∠1和是同位角,∠1和是内错角,∠1和是同旁内角.假如∠5=∠1,那么∠1∠3.
七、小结
让同学独立总结本节内容,表达本节的概念和结论.
八、课后作业
1.教材P19第7题;
2.画图说明在同一平面内三条直线的位置关系及交点状况.
[补充内容]
1.试说明,假如两条直线都和第三条直线平行,那么这两条直线也相互平行.
2.在同一平面内,两条直线的位置关系仅有两种:相交或平行.但现实空间是立体的,
试想一想在空间中,两条直线会有哪些位置关系呢?(用长方体来说明)
七班级数学教学设计2
正数和负数
教学目标
1,整理前两个学段学过的整数、分数(包括小数)的知识,掌控正数和负数的概念;
2,能区分两种不同意义的量,会用符号表示正数和负数;
3,体验数学进展的一个重要缘由是生活实际的需要,激发同学学习数学的爱好。
教学难点正确区分两种不同意义的量。
知识重点两种相反意义的量
教学过程(师生活动)设计理念
设置情境
引入课题上课开始时,老师应通过详细的例子,简要说明在前两个学段我们已经学过的数,并由此请同学思索:生
活中仅有这些“以前学过的数”够用了吗?下面的例子
仅供参考.
师:今日我们已经是七班级的同学了,我是你们的数学老师.下面我先向你们做一下自我介绍,我的名字是_,身高1.73米,体重58.5千克,今年40岁.我们的班级是七(13)班,有60个同学,其中男同学有22个,占全班总人数的37%…
问题1:老师刚才的介绍中涌现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?
同学活动:思索,沟通
师:以前学过的数,事实上主要有两大类,分别是整数和分数(包括小数).
问题2:在生活中,仅有整数和分数够用了吗?
请同学们看书(观测本节前面的几幅图中用到了什么数,让同学感受引入负数的须要性)并思索争论,然后进行沟通。
(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)
同学沟通后,老师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“-”的新数。先回顾学校里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活中共有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严
密性,但对于同学来说,更多
地感到了数学的枯燥乏味为了既复习学校里学过的数,又能激发同学的学习兴
趣,所以创设如下的问题情境,以尽量贴近同学的实际.
这个问题能激发同学探究的欲望,同学自己看书学习是培育同学自主学习的重要途径,都应予以重视。
以上的情境和实例使同学体会生活中到处有数学,通过实例,使同学猎取大量的感性材料,为正确建立相反意义的量奠定基础。
分析问题
探究新知问题3:前面带有“一”号的新数我们应怎样命名它呢?为什么要引人负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢?
这些问题都需要要求同学理解.
老师可以用多媒体出示这些问题,让同学带着这些问题看书自学,然后师生沟通.
这阶段主要是让同学学会正数和负数的表示.
强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收人与支出;二是它们都是数量,而且是同类的量.这些问题是这节课的主要知识,老师要清晰地向同学说明,并且要留意语言的精确与规范,要舍得花时间让学充分发表想法。
举一反三思维拓展经过上面的争论沟通,同学对为什么要引人负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,老师可以要求同学举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维.
问题4:请同学们举出用正数和负数表示的例子.
问题5:你是怎样理解“正整数”“负整数,,’’正分数”和“负分数”的呢?请举例说明.
能否举出例子是同学对知识掌控程度的表达,也能进一步援助同学理解引负数的须要性。
七班级数学教学设计3
绝对值
一、教学目标设计
[知识与技能目标]
1、借助数轴,初步理解绝对值的概念,能求一个数的绝对值,会利用绝对值比较两个负数的大小。
2、通过应用绝对值解决实际问题,体会绝对值的意义和作用。
[过程与方法目标]
限度的发挥同学的主体参加,让同学在老师的引导启发,师生的沟通与探究下,轻松开心地学到新知识。
[情感立场与价值观]
借助数轴解决数学问题,有意识地形成“脑中有图,心中有数”的数形结合思想,让同学采用自主探究,合作沟通的学习方式。
二、教材解读
借助数轴引出对绝对值的概念,并通过计算、观测、沟通、发觉绝对值的性质特征,利用绝对值来比较两个负数的大小。
让同学直观理解绝对值的含义,不要在绝对值符号内部涌现多重符号和
字母,多鼓舞同学通过观测、归纳、验证。
、教学过程设计与分析
一、情境导入
[课件展示,激趣感知]
博物馆、农场到学校与学校到博物馆农场的距离的关系。
[媒体展示课件,认知生活中的有些问题]
不考虑相反意义,只考虑详细数值。
[创设情境,实例导入]利用动画展示,让同学在有趣的图画中感受绝对值激发同学的爱好。
实物的形象符合同学心理,同学爱好很高,踊跃发言,95%的同学能顺当的解决问题。
师生互动
[提出问题,引发争论]
1、引导同学得出绝对值定义及表示方法。
2、同桌之间相互举例。
[展示:启发同学沟通了解绝对值]
归纳绝对值概念,老师指出表示方法。
[师生互动、探究新知]:同学依据情境感知初步认知绝对值,并通过对其概念的理解求解一个数的绝对值。
同桌之间举例,效果良好,表达了“自主——协作”学习。
阅读课文,互动探究
求解各数的绝对值后争论
1、想一想互为相反数的两个数的绝对值有什么关系?同学举例,并进行观测、比较、归纳。
2、议一议一个数的绝对值与这个数有什么关系?小组争论、沟通老师引导同学用自己的语言描述所得结论老师质疑:一个数的绝对值是否为负数?同学通过分析理解绝对值的内在涵义。
阅读课文:从各数的绝对值归纳绝对值的代数意义。
[阅读课文:“想一想]提出问题,引起同学的思索。
[阅读课文:“议一议]
同学分析各类数的绝对值与本身的关系,并对老师的质疑进行深究。
[趣引妙答,思路点拨]通过同学举例思索,对互为相反数的两个数的绝对值进行观测对比,从而得到它们的关系。
同学从“非常——一般”分类归纳绝对值的代数意义,并通过归纳总结出绝对值的内在涵义,表达同学的主体性。
积极调动同学的思维,使同学在协商、争论中将问题渐渐明亮化、详细化,在共享集体思维成果的基础上达到对当前所学内容比较全面、正确的理解。
3、做一做
[激趣探知]
老师出示过关题目
同学通过自主探究最终找到两个负数比较大小的方法,绝对值大的反而小。
师生归纳两页数比较大小的两种方法。
[探究用绝对值比较两负数的方法]
体验概念的形式过程
旧知识的引用,让同学在轻松开心的环境中猎取新知,从已有知识渐渐到新知识,不但可激发同学的爱好,并且培育同学的探究精神,同时分解了本节的难点。
从旧知识层层引入,同学爱好十足,提高了教学效果,突破了难点,同学接受轻而易举。
巩固练习
[绝对值比较两负数大小的运用]
情境:比较以下每组数的大小。
[媒体展示,出示习题]:
运用绝对值比较负数大小。
[变成训练,巩固反馈]
继续对绝对值比较负数大小进行巩固练习。
由以上练习层层深入,同学解决问题的技能大大提高,并且印象深刻。
知识延伸
[同学探究,老师点拨]
[媒体展示]
绝对值定义,代数意义及内在涵义的的敏捷应用。
[知识延伸,目标升华]
充分发挥同学的自主探究技能,使同学能够深入、细致的理解知识点。
同学能够相互评点,共同探究,既进展了自主学习技能,又强化了协作精神。
七、教学板书设计
绝对值
概念正数的绝对值是它本身
绝对值代数意义0的绝对值是0非负数
表示方法||负数的绝对值是它的相反数
如:|-2|=2|+3|=3绝对值最小的数是0
七班级数学教学设计4
相反数
教学目标
1,掌控相反数的概念,进一步理解数轴上的点与数的对应关系;
2,通过归纳相反数在数轴上所表示的点的特征,培育归纳技能;
3,体验数形结合的思想。
教学难点归纳相反数在数轴上表示的点的特征
知识重点相反数的概念
教学过程(师生活动)设计理念
设置情境
引入课题问题1:请将以下4个数分成两类,并说出为什么要这样分类
4,-2,-5,+2
允许同学有不同的分法,只要能说出道理,都要难予鼓舞,但老师要做适当的引导,渐渐得出5和-5,+2和-2分别归类是具有较特征的分法。
(引导同学观测与原点的距离)
思索结论:教科书第13页的思索
再换2个类似的数试一试。
归纳结论:教科书第13页的归纳。以开放的形式创设情境,以同学进行争论,并培育分类的技能
培育同学的观测与归纳技能,渗透数形思想
深化主题提炼定义给出相反数的定义
问题2:你怎样理解相反数定义中的“只有符号不同”和“互为”一词的含义?零的相反数是什么?为什么?
同学思索争论沟通,老师归纳总结。
规律:一般地,数a的相反数可以表示为-a
思索:数轴上表示相反数的两个点和原点有什么关系?
练一练:教科书第14页第一个练习体验对称的图形的特点,为相反数在数轴上的特征做预备。
深化相反数的概念;“零的相反数是零”是相反数定义的一部分。
强化互为相反数的数在数轴上表示的点的几何意义
给出规律
解决问题问题3:-(+5)和-(-5)分别表示什么意思?你能化简它们吗?
同学沟通。
分别表示+5和-5的相反数是-5和+5
练一练:教科书第14页第二个练习利用相反数的概念得出求一个数的相反数的方法
小结与作业
课堂小结1,相反数的定义
2,互为相反数的数在数轴上表示的点的特征
3,怎样求一个数的相反数?怎样表示一个数的相反数?
本课作业1,必做题教科书第18页习题1.2第3题
2,选做题老师自行安排
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1,相反数的概念使有理数的各个运算法那么简单表述,也揭示了两个非常数的特征.这两个非常数在数量上具有相同的绝对值,它们的和为零,在数轴上表示时,离开原点的距离相等等性质均有广泛的应用.所以本教学设计围绕数量和几何意义开展,渗透数形结合的思想.
2,教学引人以开放式的问题人手,培育同学的分类和发散思维的技能;把数在数轴上表示出来并观测它们的特征,在复习数轴知识的同时,渗透了数形结合的数学方法,数与形的相互转化也能加深对相反数概念的理解;问题2能援助同学精确把握相反数的概念;问题3事实上给出了求一个数的相反数的方法.
3,本教学设计表达了新课标的教学理念,同学在老师的引导下进行自主学习,自主探究,观测归纳,重视同学的思维过程,并给同学留有发挥的余地.
课题:1.2.4绝对值
教学目标1,掌控绝对值的概念,有理数大小比较法那么.
2,学会绝对值的计算,会比较两个或多个有理数的大小.
3.体验数学的概念、法那么来自于实际生活,渗透数形结合和分类思想.
教学难点两个负数大小的比较
知识重点绝对值的概念
教学过程(师生活动)设计理念
设置情境
引入课题星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一贯线上),假如规定向东为正,①用有理数表示黄老师两次所行的路程;②假如汽车每公里耗油0.15升,计算这天汽车共耗油多少升?
同学思索后,老师作如下说明:
实际生活中有些问题只关注量的详细值,而与相反
意义无关,即正负性无关,如汽车的耗油量我们只关怀汽车行驶的距离和汽油的价格,而与行驶的方向无关;
观测并思索:画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观测图形,说出朱家尖黄老师家与学校的距离.
同学回答后,老师说明如下:
数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|
例如,上面的问题中|20|=20,|-10|=10显着,|0|=0这个例子中,第一问是相反意义的量,用正负
数表示,后一问的解答那么与符号没有关系,说明实际生活中有些问题,人们只需知道它们的详细数值,而并不关注它们所表示的意义.为引入绝对值概念做预备.并使同学体
验数学知识与生活实际的联系.
七班级数学教学设计5
有理数的加法
教学目标:
1、使同学在现实情境中理解有理数加法的意义
2、经受探究有理数加法法那么的过程,掌控有理数加法法那么,并能精确地进行加法运算。[]
3、在教学中适当渗透分类争论思想。
重点:有理数的加法法那么
重点:异号两数相加的法那么
教学过程:
二、讲授新课
1、同号两数相加的法那么
问题:一个物体作左右方向的运动,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑装修施工合同书
- 电子商务平台搭建及运营服务协议
- 咨询服务代理合同
- 应届毕业生顶岗实习协议书
- 游戏开发授权合作协议
- 房地产开发权益转让合同
- 外接电源合同协议
- 的担保借款合同
- 汽车零部件制造技术转让合作协议
- 农家乐住宿房装修合同
- 妊娠期用药安全课件
- GB/T 44958-2024化工设备安全管理规范
- 《化妆品包装材料相容性试验评估指南》
- 6张精美甘特图图表可编辑课件模板
- 2025年轧钢原料工技能考试题库
- 【政治】法律保障生活课件-+2024-2025学年统编版道德与法治七年级下册
- 大学生考研规划
- 四川政采评审专家入库考试基础题复习试题
- 智研咨询-2025年中国生鲜农产品行业市场全景调查、投资策略研究报告
- 车辆采购论证方案
- 尼康D7000简体中文说明书
评论
0/150
提交评论