版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
模型介绍模型介绍R【点睛1】触发隐圆模型的条件(1)动点定长模型若P为动点,但AB=AC=AP原理:圆A中,AB=AC=AP则B、C、P三点共圆,A圆心,AB半径备注:常转全等或相似证明出定长(2)直角圆周角模型固定线段AB所对动角∠C恒为90°原理:圆O中,圆周角为90°所对弦是直径则A、B、C三点共圆,AB为直径备注:常通过互余转换等证明出动角恒为直角(3)定弦定角模型固定线段AB所对动角∠P为定值原理:弦AB所对同侧圆周角恒相等则点P运动轨迹为过A、B、C三点的圆备注:点P在优弧、劣弧上运动皆可(4)四点共圆模型①若动角∠A+动角∠C=180°原理:圆内接四边形对角互补则A、B、C、D四点共圆备注:点A与点C在线段AB异侧(5)四点共圆模型②固定线段AB所对同侧动角∠P=∠C原理:弦AB所对同侧圆周角恒相等则A、B、C、P四点共圆备注:点P与点C需在线段AB同侧R【点睛2】圆中旋转最值问题条件:线段AB绕点O旋转一周,点M是线段AB上的一动点,点C是定点(1)求CM最小值与最大值(2)求线段AB扫过的面积(3)求最大值与最小值作法:如图建立三个同心圆,作OM⊥AB,B、A、M运动路径分别为大圆、中圆、小圆R结论:①CM1最小,CM3最大②线段AB扫过面积为大圆与小圆组成的圆环面积③最小值以AB为底,CM1为高;最大值以AB为底,CM2为高例题例题精讲考点一:定点定长构造隐圆【例1】.如图,已知AB=AC=AD,∠CBD=2∠BDC,∠BAC=44°,则∠CAD的度数为.解:∵AB=AC=AD,∴B,C,D在以A为圆心,AB为半径的圆上,∴∠CAD=2∠CBD,∠BAC=2∠BDC,∵∠CBD=2∠BDC,∠BAC=44°,∴∠CAD=2∠BAC=88°.故答案为:88°变式训练【变式1-1】.如图所示,四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.则BD的长为()A. B. C. D.解:以A为圆心,AB长为半径作圆,延长BA交⊙A于F,连接DF.∵DC∥AB,∴=,∴DF=CB=1,BF=2+2=4,∵FB是⊙A的直径,∴∠FDB=90°,∴BD==.故选:B.【变式1-2】.如图,点A,B的坐标分别为A(4,0),B(0,4),C为坐标平面内一点,BC=2,点M为线段AC的中点,连接OM,OM的最大值为.解:∵C为坐标平面内一点,BC=2,∴点C的运动轨迹是在半径为2的⊙B上,如图,取OD=OA=4,连接OD,∵点M为线段AC的中点,∴OM是△ACD的中位线,∴OM=,∴OM最大值时,CD取最大值,此时D、B、C三点共线,此时在Rt△OBD中,BD==4,∴CD=2+4,∴OM的最大值是1+2.故答案为:1+2.考点二:定弦定角构造隐圆【例2】.如图,在△ABC中,BC=2,点A为动点,在点A运动的过程中始终有∠BAC=45°,则△ABC面积的最大值为.解:如图,△ABC的外接圆⊙O,连接OB、OC,∵∠BAC=45°,∴∠BOC=2∠BAC=2×45°=90°,过点O作OD⊥BC,垂足为D,∵OB=OC,∴BD=CD=BC=1,∵∠BOC=90°,OD⊥BC,∴OD=BC=1,∴OB==,∵BC=2保持不变,∴BC边上的高越大,则△ABC的面积越大,当高过圆心时,最大,此时BC边上的高为:+1,∴△ABC的最大面积是:×2×(+1)=+1.故答案为:+1.
变式训练【变式2-1】.如图,P是矩形ABCD内一点,AB=4,AD=2,AP⊥BP,则当线段DP最短时,CP=.解:以AB为直径作半圆O,连接OD,与半圆O交于点P′,当点P与P′重合时,DP最短,则AO=OP′=OB=AB=2,∵AD=2,∠BAD=90°,∴OD=2,∠ADO=∠AOD=∠ODC=45°,∴DP′=OD﹣OP′=2﹣2,过P′作P′E⊥CD于点E,则P′E=DE=DP′=2﹣,∴CE=CD﹣DE=+2,∴CP′=.故答案为:2.【变式2-2】.如图,边长为4的正方形ABCD外有一点E,∠AEB=90°,F为DE的中点,连接CF,则CF的最大值为.解:如图,以AB为直径作圆H,∵∠AEB=90°,∴点E在这个⊙H上,延长DC至P,使CD=PC,连接BE,EH,PH,过H作HM⊥CD于M,∵EF=DF,CD=PC,∴CF=PE,Rt△AEB中,∵H是AB的中点,∴EH=AB=2,Rt△PHM中,由勾股定理得:PH===2,∵PE≤EH+PH=2+2,当P,E,H三点共线时,PE最大,CF最大,∴CF的最大值是+1考点三:对角互补构造隐圆【例3】.如图,在矩形ABCD中,AB=3,BC=5,点E在对角线AC上,连接BE,作EF⊥BE,垂足为E,直线EF交线段DC于点F,则=__________.解:如图,连接BF,取BF的中点O,连接OE,OC.∵四边形ABCD是矩形,EF⊥BE,∴四边形EFCB对角互补,∴B,C,F,E四点共圆,∴∠BEF=∠BCF=90°,AB=CD=3,BC=AD=5,∵OB=OF,∴OE=OB=OF=OC,∴B,C,F,E四点在以O为圆心的圆上,∴∠EBF=∠ECF,∴tan∠EBF=tan∠ACD,∴==变式训练【变式3-1】.如图,在四边形ABCD中,∠BAD=∠BCD=90°,∠ACD=30°,AD=2,E是AC的中点,连接DE,则线段DE长度的最小值为.解:∵∠BAD=∠BCD=90°,∴A、B、C、D四点共圆,且BD为直径,取BD中点O,则圆心为点O,连接AO、CO,取AO中点F,连接EF,DF,∵∠ACD=30°,∴∠AOD=60°,∵OA=OD,∴△OAD为等边三角形,∴OA=OD=OC=AD=2,∴∠AFD=90°,则DF=,∵EF是△AOC的中位线,∴EF=OC=1,在△DEF中,DF﹣EF≤DE,∴当D、E、F三点共线时,DE取到最小,最小值为.∴DE的最小值为.【变式3-2】.如图,正方形ABCD的边长为2,点E是BC边上的一动点,点F是CD上一点,且CE=DF,AF、DE相交于点O,BO=BA,则OC的值为.解:如图∵四边形ABCD是正方形,∴AD=DC,∠ADF=∠ECD=∠ABC=90°,∵DF=CE,∴△ADF≌△DCE,∴∠DAF=∠EDC,∵∠EDC+∠ADO=90°,∴∠DAF+∠ADO=90°,∴∠AOD=90°,∴四边形ABEO对角互补,∴A、B、E、O四点共圆,取AE的中点K,连接BK、OK,作OM⊥CD于M.则KB=AK=KE=OK,∵BA=BO,∴∠BAO=∠BOA=∠AEB=∠DEC,∵AB=DC,∠ABE=∠DCE,∠AEB=∠DEC,∴△ABE≌△DCE,∴BE=EC=1,∴DF=EC=FC=1,∴DE==,∵△DFO∽△DEC,∴==,∴==,∴OD=,OF=,∵•DO•OF=•DF•OM,∴OM=,∴MF==,∴CM=1+=,在Rt△OMC中,OC==,故答案为.实战演练实战演练1.如图,在平面直角坐标系中,点A、B的坐标分别为(﹣3,0)、(0,4),以点A为圆心,以AB长为半径画弧交x轴上点C,则点C的坐标为()A.(5,0) B.(2,0) C.(﹣8,0) D.(2,0)或(﹣8,0)解:∵点A、B的坐标分别为(﹣3,0)、(0,4),∴OA=3,OB=4,∴AB==5,∴AC′=5,AC=5,∴C′点坐标为(2,0);C点坐标为(﹣8,0).故选:D.2.如图,在矩形ABCD中,已知AB=3,BC=4,点P是BC边上一动点(点P不与B,C重合),连接AP,作点B关于直线AP的对称点M,则线段MC的最小值为()A.2 B. C.3 D.解:连接AM,∵点B和M关于AP对称,∴AB=AM=3,∴M在以A圆心,3为半径的圆上,∴当A,M,C三点共线时,CM最短,∵AC=,AM=AB=3,∴CM=5﹣3=2,故选:A.3.如图,在矩形ABCD中,AB=8,BC=6,点P在矩形的内部,连接PA,PB,PC,若∠PBC=∠PAB,则PC的最小值是()A.6 B.﹣3 C.2﹣4 D.4﹣4解:∵四边形ABCD是矩形,∴∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠PBC=∠PAB,∴∠PAB+∠PBA=90°,∴∠APB=90°,∴点P在以AB为直径的圆上运动,设圆心为O,连接OC交⊙O于P,此时PC最小,∵OC===2,∴PC的最小值为2﹣4,故选:C.4.如图所示,∠MON=45°,Rt△ABC,∠ACB=90°,BC=6,AC=8,当A、B分别在射线OM、ON上滑动时,OC的最大值为()A.12 B.14 C.16 D.14解:如图,在Rt△ABC中,由勾股定理得AB=,在AB的下方作等腰直角△AQB,∠AQB=90°,作BH⊥QC于H,∴点O在以点Q为圆心,QB为半径的圆上,∵∠AQB+∠ACB=180°,∴点A、C、B、Q共圆,∴∠BCQ=∠BAQ=45°,∴BH=CH=3,在Rt△BQH中,由勾股定理得QH=4,∴CQ=7,当点C、Q、O共线时,OC最大,∴OC的最大值为OQ+CQ=5+7=12,故选:A.5.如图,已知AB=AC=AD,∠CBD=2∠BDC,∠BAC=44°,则∠CAD的度数为.解:∵AB=AC=AD,∴B,C,D在以A为圆心,AB为半径的圆上,∴∠CAD=2∠CBD,∠BAC=2∠BDC,∵∠CBD=2∠BDC,∠BAC=44°,∴∠CAD=2∠BAC=88°.故答案为:88°.
6.如图示,A,B两点的坐标分别为(﹣2,0),(3,0),点C在y轴上,且∠ACB=45°,则点C的坐标为.解:在x轴的上方作等腰直角△ABF,FB=FA,∠BAF=90°,以F为圆心,FA为半径作⊙F交y轴于C,连接CB,CA.∵∠ACB=∠AFB=45°,∵B(﹣2,0),A(3,0),△ABF是等腰直角三角形,∴F(,),FA=FB=FC=,设C(0.m),则()2+(﹣m)2=()2,解得m=6或﹣1(舍弃)∴C(0,6),根据对称性可知C′(0,﹣6)也符合条件,综上所述,点C的坐标为(0,6)或(0,﹣6).故答案为(0,6)或(0,﹣6).
7.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB+∠PBA=90°,则线段CP长的最小值为2.解:∵∠PAB+∠PBA=90°,∴∠APB=90°,∴P在以AB为直径的圆周上(P在△ACB内部),连接OC,交⊙O于P,此时CP的值最小,如图,∵AB=6,∴OB=3,∵BC=4,∴由勾股定理得:OC=5,∴CP=5﹣3=2,故答案为:2.8.在△ABC中,AB=4,∠C=45°,则AC+BC的最大值为.解:过点B作BD⊥AC于点D,∵∠C=45°,∴△BCD为等腰直角三角形,∴BD=CD,设BD=CD=a,延长AC至点F,使得CF=a,∵tan∠AFB==,作△ABF的外接圆⊙O,过点O作OE⊥AB于点E,则AE=AB=2,∠AOE=∠AFB,∴tan∠AOE=,∴OE=4,OA==,∴+BC=(AC+BC)=(AC+CF)=≤(OA+OF),∴+BC的最大值为×=4.故答案为:.9.如图,等边△ABC中,AB=6,点D、点E分别在BC和AC上,且BD=CE,连接AD、BE交于点F,则CF的最小值为.解:如图,∵△ABC是等边三角形,∴AB=BC=AC,∠ABC=∠BAC=∠BCE=60°,∵BD=CE,∴△ABD≌△BCE(SAS)∴∠BAD=∠CBE,又∵∠AFE=∠BAD+∠ABE,∴∠AFE=∠CBE+∠ABE=∠ABC,∴∠AFE=60°,∴∠AFB=120°,∴点F的运动轨迹是O为圆心,OA为半径的弧上运动(∠AOB=120°,OA=2),连接OC交⊙O于N,当点F与N重合时,CF的值最小,最小值=OC﹣ON=4﹣2=2.故答案为2.10.如图,正方形ABCD中,AB=2,动点E从点A出发向点D运动,同时动点F从点D出发向点C运动,点E、F运动的速度相同,当它们到达各自终点时停止运动,运动过程中线段AF、BE相交于点P,则线段DP的最小值为.解:如图:,∵动点F,E的速度相同,∴DF=AE,又∵正方形ABCD中,AB=2,∴AD=AB,在△ABE和△DAF中,,∴△ABE≌△DAF,∴∠ABE=∠DAF.∵∠ABE+∠BEA=90°,∴∠FAD+∠BEA=90°,∴∠APB=90°,∵点P在运动中保持∠APB=90°,∴点P的路径是一段以AB为直径的弧,设AB的中点为G,连接CG交弧于点P,此时CP的长度最小,AG=BG=AB=1.在Rt△BCG中,DG===,∵PG=AG=1,∴DP=DG﹣PG=﹣1即线段DP的最小值为﹣1,故答案为:﹣1.11.如图,四边形ABCD中,∠ABC=∠ACD=∠ADC=45°,△DBC的面积为8,则BC长为.解:如图,作DH⊥BC交BC的延长线于H,取CD的中点O,连接OA,OB.∵DH⊥BH,∴∠DHC=90°,∴四边形DACH对角互补,∴A,C,H,D四点共圆,∵∠DAC=90°,CO=OD,∴OA=OD=OC=OH,∴A,C,H,D四点在以O为圆心的圆上,∵AC=AD,∴∠CHA=∠AHD=45°,(没有学习四点共圆,可以这样证明:过点A作AM⊥DH于M,过点A作AN⊥BH于N,证明△AMD≌△ANC,推出AM=AN,推出AH平分∠MHN即可)∵∠ABC=45°,∴∠BAH=90°,∴BA=AH,∵∠BAH=∠CAD=90°,∴∠BAC=∠HAD,∵AC=AD,AB=AH,∴△BAC≌△HAD(SAS),∴BC=DH,∴S△BCD=×BC×DH=×BC2=16,∴BC=4或﹣4(舍弃),故答案为4.12.已知:在△ABC中,AB=AC=6,∠B=30°,E为BC上一点,BE=2EC,DE=DC,∠ADC=60°,则AD的长.解:连接AE,过点A作AH⊥BC于H点,在Rt△ABH中,∵∠B=30°,∴AH=AB=3.利用勾股定理可得BH=3,根据等腰三角形性质可知CH=BH=3,BC=6.∴CE=BC=2.∴HE=CH﹣CE=.在Rt△AHE中,由勾股定理可求AE=2.所以AE=CE,∠CAE=∠ACB=30°,所以∠AEB=60°=∠ADC,∴四边形AECD对角互补,∴点A、D、C、E四点共圆,∴∠ADE=∠ACE=30°,所以∠CDE=∠ADC﹣∠ADE=30°.∵DE=DC,∴∠DEC=75°.∴∠AED=120°﹣75°=45°.过点A作AM⊥DE于M点,则AM=AE=.在Rt△AMD中,∠ADM=30°,∴AD=2AM=.故答案为2.13.如图,在正方形ABCD中,AD=6,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,连接DF交AC于点G,将△EFG沿EF翻折,得到△EFM.连接DM.交EF于点N.若AF=2.则△EMN的面积是.解:如图,取DF的中点K,连接AK,EK.连接GM交EF于H.∵四边形ACD是正方形,∴AD=AB=6,∠DAB=90°,AB∥CD,∠DAC=∠CAB=45°,∵DE⊥EF,∴∠DEF=∠DAF=90°,∴四边形AFED对角互补,∴A,F,E,D四点共圆,∵DK=KF,∴KA=KD=KF=KE,∴∠DFE=∠DAE=45°,∴∠EDF=∠EFD=45°,∴DE=EF,∵AF=2,AD=6,∴DF==2,∴DE=DF=2,∵AF∥CD,∴==,∴FG=FM=,∴GM=FM=,∴FH=GH=HM=,∵EF⊥GM,∴GH=HM=,∴EH=EF﹣FH=2﹣=,∵MH∥DE,∴===,∴EN=EH=,∴S△ENM=•EN•MH=••=.故答案为.
14.如图,在正方形ABCD中,AD=8,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB的中点,则FM=,=.解:∵将△EFG沿EF翻折,得到△EFM,∴FG=FM,∵四边形ABCD是正方形,∴AB∥CD,∴△AGF∽△CGD,∴,∵点F是AB的中点,∴AF=CD,∴,∵AD=8,∴AF=4,∴DF==4,∴FM=FG=;∵AC是正方形ABCD的对角线,∴∠CAD=45°,∵EF⊥DE,∴∠DEF=90°=∠BAD,∴∠BAD+∠DEF=180°,∴点A,D,E,F四点共圆,∴∠DFE=∠DAC=45°,∴∠EDF=45°,∴DE=EF=DF=2,连接GM,交EF于P,由折叠知,PG=PM,GM⊥EF,∵DE⊥EF,∴GM∥DE,∴△FPG∽△FED,∴,∴PF=EF=,∴PE=EF﹣PF=,∵GM∥DE,∴△MPN∽△DEN,∴,∴,∴EN=PE=,在Rt△DEN中,,故答案为:;.
15.如图,在矩形ABCD中,AB=6,AD=8,点E,F分别是边CD,BC上的动点,且∠AFE=90°(1)证明:△ABF∽△FCE;(2)当DE取何值时,∠AED最大.(1)证明:∵四边形ABCD是矩形,∴∠B=∠C=90°,∵∠AFE=90°,∴∠AFB+∠EFC=90°,∵∠EFC+∠FEC=90°,∴∠AFB=∠FEC,∴△ABF∽△FCE.(2)取AE的中点O,连接OD、OF.∵∠AFE=∠ADE=90°(对角互补),∴A、D、E、F四点共圆,∴∠AED=∠AFD,∴当⊙O与BC相切时,∠AFD的值最大,易知BF=CF=4,∵△ABF∽△FCE,∴=,∴=,∴EC=,∴DE=DC﹣CE=6﹣=.∴当DE=时,∠AED的值最大.16.如图,将两张等腰直角三角形纸片OAB和OCD放置在平面直角坐标系中,点O(0,0),A(0,4).将Rt△OCD绕点O顺时针旋转,连接AC,BD,直线AC与BD相交于点P.(1)求证:AP⊥BP;(2)若点Q为OA的中点,求PQ的最小值.(1)证明:∵△OAB和△OCD都是等腰直角三角形,∴OA=OB,OC=OD,∠AOB=∠COD=90°,∴∠AOC+∠COB=∠COB+∠BOD=90°,∴∠AOC=∠BOD,在△AOC和△BOD中,,∴△AOC≌△BOD(SAS),∴∠OAC=∠OBD,∵△OAB是等腰直角三角形,∴∠OAB+∠OBA=90°,∴∠OAC+∠CAB+∠ABO=90°,∴∠OBD+∠CAB+∠ABO=90°,∴∠APB=90°,∴AP⊥BP;(2)解:如图,∵AP⊥BP,∴点P在以AB为直径的圆E上运动,由点圆最值可得,当P,Q,E三点共线,且点P在EQ的延长线上时,PQ最小,∵△OAB是等腰直角三角形,A(0,4),∴OA=OB=4,∴AB=OA=4,∵E是AB的中点,Q是OA的中点,∴QE=OB=2,∵PE是圆E的半径,∴PE=AB=2,∴PQ=PE﹣QE=2﹣2,∴PQ的最小值为2﹣2.17.(1)【学习心得】于彤同学在学习完“圆”这一章内容后,感觉到一些几何问题如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.例如:如图1,在△ABC中,AB=AC,∠BAC=90°,D是△ABC外一点,且AD=AC,求∠BDC的度数.若以点A为圆心,AB为半径作辅助⊙A,则点C、D必在⊙A上,∠BAC是⊙A的圆心角,而∠BDC是圆周角,从而可容易得到∠BDC=45°.(2)【问题解决】如图2,在四边形ABCD中,∠BAD=∠BCD=90°,∠BDC=25°,求∠BAC的度数.(3)【问题拓展】如图3,如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是﹣1.解:(1)如图1,∵AB=AC,AD=AC,∴以点A为圆心,AB为半径作圆A,点B、C、D必在⊙A上,∵∠BAC是⊙A的圆心角,而∠BDC是圆周角,∴∠BDC=∠BAC=45°,故答案是:45;(2)如图2,取BD的中点O,连接AO、CO.∵∠BAD=∠BCD=90°,∴点A、B、C、D共圆,∴∠BDC=∠BAC,∵∠BDC=25°,∴∠BAC=25°,(3)如图3,在正方形ABCD中,AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴∠1=∠2,在△ADG和△CDG中,,∴△ADG≌△CDG(SAS),∴∠2=∠3,∴∠1=∠3,∵∠BAH+∠3=∠BAD=90°,∴∠1+∠BAH=90°,∴∠AHB=180°﹣90°=90°,取AB的中点O,连接OH、OD,则OH=AO=AB=1,在Rt△AOD中,OD===,根据三角形的三边关系,OH+DH>OD,∴当O、D、H三点共线时,DH的长度最小,最小值=OD﹣OH=﹣1.(解法二:可以理解为点H是在Rt△AHB,AB直径的半圆上运动当O、H、D三点共线时,DH长度最小)故答案为:﹣1.18.如图,已知抛物线y=ax2+bx+6(a≠0)的图象与x轴交于点A(﹣2,0)和点B(6,0),与y轴交于点C,点D为抛物线的顶点.(1)求抛物线的表达式及顶点D的坐标;(2)如图①,连接BC,点P是线段BC上方抛物线上一动点,若△PBC的面积为12,求点P的坐标;(3)如图②,已知⊙B的半径为2,点Q是⊙B上一个动点,连接AQ,DQ,求DQ+AQ的最小值.解:(1)令x=0,则y=6,C(0,6),∵A(﹣2,0),B(6,0),∴设抛物线的表达式为y=a(x﹣6)(x+2)(a≠0),当x=0时,y=﹣12a=6,解得a=﹣,抛物线的表达式为y=﹣(x﹣6)(x+2)=﹣x2+2x+6,∵y=﹣x2+2x+6=﹣(x﹣2)2+8,∴顶点D的坐标为(2,8);(2)由(1)知,C(0,6),设直线BC的表达式为y=kx+t,将点B、C的坐标代入得6k+t=0,,解得,∴直线BC的表达式为y=﹣x+6;如图,过点P作PH∥y轴交BC于点H,连接PB,PC,设P(x,﹣x2+2x+6),则H(x,﹣x+6)(0<x<6),∴PH=﹣x2+2x+6﹣(﹣x+6)=﹣x2+3x,∵△PBC的面积为12,∴OB•PH=×6×(﹣x2+3x)=12,即﹣x2+3x=4,解得x=2或x=4,∴点P的坐标为(2,8)或(4,6);(3)如图,取点E(5.5,0),∴BE=0.5,∵AB=8,BQ=2,∴AB:BQ=4:1,∵BE=0.5,BQ=2,∴BQ:BE=4:1,∵∠ABQ=∠QBE,∴△ABQ∽△QBE,∴AQ:QE=BQ:BE=4:1,即QE=AQ,∴DQ+AQ=DQ+QE,由两点间线段最短可知,当点D,Q,E三点共线时,DQ+QE最小,最小值为DE,∴DE==.即DQ+AQ的最小值为:.19.模型分析如图在△ABC中,AD⊥BC于点D,其中∠BAC为定角,AD为定值,我们称该模型为定角定高模型.问题:随着点A的运动,探究BC的最小值(△ABC面积的最小值).(1)当∠BAC=90°时(如图①):第一步:作△ABC的外接圈⊙O;第二步:连接OA;第三步:由图知AO≥AD,当AO=AD时,BC取得最小值.(2)当∠BAC<90°时(如图②):第一步:作△ABC的外接圆⊙O;第二步:连接OA,OB,OC,过点O作OE⊥BC于点E:第三步:由图知AO+OE≥AD,当AO+OE=AD时,BC取得最小值.那么∠BAC>90°呢?结论:当AD过△ABC的外接圆圆心O(即AB=AC)时,BC取得最小值,此时△ABC的面积最小当∠BAC<90°时,请根据【模型分析】(2)中的做法将下面证明过程补充完整.求证:当AD过△ABC的外接圆圆心O(即AB=AC)时,BC取得最小值,此时△ABC的面积最小.证明:如解图,作△ABC的外接圆⊙O,连接OA,OB,OC,过点O作OE⊥BC于点E,设⊙O的半径为r,∠BOE=∠BAC=α,AD=h,∴BC=2BE=2OB•sinα=2r•sinα,∵sinα为定值,∴要使BC最小,只需…自主
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024上海住宅小区消防器材储备与分发服务合同样本3篇
- 保险公司个人年终工作总结
- 简单的竞聘副主任演讲稿10篇
- 冀教版三年级上册《估算》课件
- 《高血压健康管理师》课件
- 《动画城课件》课件
- 《肿瘤放射治疗常识》课件
- 《养老金会计》课件
- 《再看鸦片战争说》课件
- 汽车销售配送管理办法
- 古诗词复习课件语文六年级上册
- 石油炼制技术生涯发展展示
- 【MOOC】3D工程图学-华中科技大学 中国大学慕课MOOC答案
- 资料制作合同范例
- 国家开放大学2024年12月《思想道德与法治试卷1-版本1》大作业参考答案
- 团队激励 课件
- 犬猫病诊疗技术
- 信息技术必修二《信息系统与社会》第一章第一节《信息技术与社会》说课稿
- 外派与异地工作管理制度
- 2024年《高等数学2》教案设计:案例分析与启示
- 2025年国家保安员资格考试题库
评论
0/150
提交评论