版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届重市庆南开中学数学八下期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.在学校举办的独唱比赛中,10位评委给小丽的平分情况如表所示:成绩(分)678910人数32311则下列说法正确的是()A.中位数是7.5 B.中位数是8 C.众数是8 D.平均数是82.如图,在梯形ABCD中,AB∥CD,中位线EF与对角线AC、BD交于M、N两点,若EF=18cm,MN=8cm,则AB的长等于()cmA.10 B.13 C.20 D.263.点P是图①中三角形上一点,坐标为(a,b),图①经过变化形成图②,则点P在图②中的对应点P’的坐标为()A. B. C. D.4.对于二次函数y=(x-1)2+2的图象,下列说法正确的是()A.开口向下 B.顶点坐标是(1,2) C.对称轴是x=-1 D.有最大值是25.如图,平行四边形ABCD中,AB=8cm,AD=12cm,点P在AD边上以每秒1cm的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有()A.4次 B.3次 C.2次 D.1次6.下列函数中,自变量x的取值范围是x≥3的是()A. B. C. D.7.若与最简二次根式是同类二次根式,则m的值为()A.5 B.6 C.2 D.48.下列变形中,正确的是()A. B.C. D.9.将抛物线y=x2﹣4x﹣4向左平移3个单位,再向上平移5个单位,得到抛物线的函数表达式为()A.y=(x+1)2﹣13 B.y=(x﹣5)2﹣3C.y=(x﹣5)2﹣13 D.y=(x+1)2﹣310.平面直角坐标系中,点A的坐标为,将线段OA绕原点O逆时针旋转得到,则点的坐标是A. B. C. D.11.如图,是某市6月份日平均气温情况,在日平均气温这组数据中,众数和中位数分别是()A.21,22 B.21,21.5 C.10,21 D.10,2212.如图,在梯形ABCD中,∠ABC=90°,AD∥BC,AE∥CD交BC于E,∠BAE=∠EAC,O是AC的中点,AD=DC=2,下面结论:①AC=2AB;②AB=;③S△ADC=2S△ABE;④BO⊥AE,其中正确的个数是()A.1 B.2 C.3 D.4二、填空题(每题4分,共24分)13.如图,P是反比例函数图象上的一点,轴于A,点B,C在y轴上,四边形PABC是平行四边形,则▱PABC的面积是______.14.已知关于x的方程的系数满足,且,则该方程的根是______.15.若关于x的分式方程的解为非负数,则a的取值范围是_____.16.已知一次函数和函数,当时,x的取值范围是______________.17.一粒米的重量约为0.000036克,用科学记数法表示为_____克.18.在直角坐标系中,直线与y轴交于点,按如图方式作正方形、、…,、、…在直线上,点、、…,在x轴上,图中阴影部分三角形的面积从左到右依次记为、、、..,则的值为________.三、解答题(共78分)19.(8分)为拓展学生视野,促进书本知识与生活实践的深度融合,荆州市某中学组织八年级全体学生前往松滋洈水研学基地开展研学活动.在此次活动中,若每位老师带队14名学生,则还剩10名学生没老师带;若每位老师带队15名学生,就有一位老师少带6名学生,现有甲、乙两种大型客车,它们的载客量和租金如表所示:甲型客车乙型客车载客量(人/辆)3530租金(元/辆)400320学校计划此次研学活动的租金总费用不超过3000元,为安全起见,每辆客车上至少要有2名老师.(1)参加此次研学活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆车上至少要有2名老师,可知租车总辆数为辆;(3)学校共有几种租车方案?最少租车费用是多少?20.(8分)如图,中,是上的一点,若,,,,求的面积.21.(8分)如图所示,每个小正方形的边长为1cm(1)求四边形ABCD的面积;(2)四边形ABCD中有直角吗?若有,请说明理由.22.(10分)如图,在四边形ABCD中,BD为一条对角线,且,,E为AD的中点,连接BE.(1)求证:四边形BCDE为菱形;(2)连接AC,若AC平分,,求AC的长.23.(10分)已知关于的一元二次方程(1)若该方程有两个实数根,求的取值范围;(2)若方程的两个实数根为,且,求的值.24.(10分)某内陆城市为了落实国家“一带一路”战略,促进经济发展,增强对外贸易的竞争力,把距离港口420km的普通公路升级成了同等长度的高速公路,结果汽车行驶的平均速度比原来提高了50%,行驶时间缩短了2h,求汽车原来的平均速度.25.(12分)如图①,在正方形中,点,分别在、上,且.(1)试探索线段、的关系,写出你的结论并说明理由;(2)连接、,分别取、、、的中点、、、,四边形是什么特殊平行四边形?请在图②中补全图形,并说明理由.26.如图,在平行四边形ABCD中,∠ABC的平分线与CD的延长线交于点E,与AD交于点F,且点F恰好为边AD的中点.(1)求证:△ABF≌△DEF;(2)若AG⊥BE于G,BC=4,AG=1,求BE的长.
参考答案一、选择题(每题4分,共48分)1、A【解题分析】
分别利用众数、中位数及加权平均数的定义及公式求得答案后即可确定符合题意的选项.【题目详解】∵共10名评委,∴中位数应该是第5和第6人的平均数,为7分和8分,∴中位数为:7.5分,故A正确,B错误;∵成绩为6分和8分的并列最多,∴众数为6分和8分,故C错误;∵平均成绩为:=8.5分,故D错误,故选:A.【题目点拨】本题考查了众数、中位数及加权平均数的知识,解题的关键是能够根据定义及公式正确的求解,难度不大.2、D【解题分析】分析:首先根据梯形中位线的性质得出AB+CD=36cm,根据MN的长度以及三角形中位线的性质得出EM=FN=5cm,从而得出CD=10cm,然后得出答案.详解:∵EF=,∴AB+CD=36cm,∵MN=8cm,EF=18cm,∴EM+FN=10cm,∴EM=FN=5cm,根据三角形中位线的性质可得:CD=2EM=10cm,∴AB=36-10=26cm,故选D.点睛:本题主要考查的是梯形中位线以及三角形中位线的性质,属于基础题型.明确中位线的性质是解决这个问题的关键.3、A【解题分析】
根据已知点的坐标变换发现规律进行求解.【题目详解】根据题意得(2,0)变化后的坐标为(1,0);(2,4)变化后的坐标为(1,4);故P点(a,b)变化后的坐标为故选A.【题目点拨】此题主要考查坐标的变化,解题的关键是根据题意发现规律进行求解.4、B【解题分析】
根据二次函数的性质对各开口方向、顶点坐标、对称轴与最值进行判断即可.【题目详解】二次函数y=(x-1)1+1的图象的开口向上,对称轴为直线x=1,顶点坐标为(1,1),函数有最小值1.故选B.【题目点拨】本题考查了二次函数的性质,掌握利用顶点式求抛物线的开口方向、顶点坐标、对称轴与最值是解决问题的关键.5、B【解题分析】
试题解析:∵四边形ABCD是平行四边形,∴BC=AD=12,AD∥BC,∵四边形PDQB是平行四边形,∴PD=BQ,∵P的速度是1cm/秒,∴两点运动的时间为12÷1=12s,∴Q运动的路程为12×4=48cm,∴在BC上运动的次数为48÷12=4次,第一次PD=QB时,12-t=12-4t,解得t=0,不合题意,舍去;
第二次PD=QB时,Q从B到C的过程中,12-t=4t-12,解得t=4.8;
第三次PD=QB时,Q运动一个来回后从C到B,12-t=31-4t,解得t=8;
第四次PD=QB时,Q在BC上运动3次后从B到C,12-t=4t-31,解得t=9.1.
∴在运动以后,以P、D、Q、B四点组成平行四边形的次数有3次,
故选:B.考点:平行四边形的判定与性质6、D【解题分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使各函数在实数范围内有意义,必须:A、分式有意义,x﹣1≠0,解得:x≠1;B、二次根式和分式有意义,x﹣1>0,解得x>1;C、函数式为整式,x是任意实数;D、二次根式有意义,x﹣1≥0,解得x≥1.故选D.7、C【解题分析】
直接化简二次根式,进而利用同类二次根式的定义分析得出答案.【题目详解】∵,与最简二次根式是同类二次根式,
∴m+1=3,
解得:m=1.
故选:C.【题目点拨】考查了同类二次根式,正确把握同类二次根式的定义是解题关键.8、A【解题分析】
分式的基本性质是分式的分子、分母同时乘以或除以同一个非1的数或式子,分式的值不变.而如果分式的分子、分母同时加上或减去同一个非1的数或式子,分式的值改变.【题目详解】A、,正确;B、,错误;C、,错误;D、,错误;故选A.【题目点拨】本题主要考查了分式的性质.注意约分是约去分子、分母的公因式,并且分子与分母相同时约分结果应是1,而不是1.9、D【解题分析】
因为y=x2-4x-4=(x-2)2-8,以抛物线y=x2-4x-4的顶点坐标为(2,-8),把点(2,-8)向左平移1个单位,再向上平移5个单位所得对应点的坐标为(-1,-1),所以平移后的抛物线的函数表达式为y=(x+1)2-1.故选D.10、A【解题分析】
如图作轴于E,轴于利用全等三角形的性质即可解决问题;【题目详解】如图作轴于E,轴于F.则≌,,,,故选:A.【题目点拨】本题考查坐标与图形变化、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.11、A【解题分析】
根据众数和中位数的定义求解.【题目详解】解:这组数据中,21出现了10次,出现次数最多,所以众数为21,第15个数和第16个数都是1,所以中位数是1.
故选A.【题目点拨】本题考查众数的定义:一组数据中出现次数最多的数据叫做众数.也考查了条形统计图和中位数.12、D【解题分析】
根据条件AD∥BC,AE∥CD可以得出四边形AECD是平行四边形,由AD=CD可以得出四边形AECD是菱形,就有AE=EC=CD=AD=2,就有∠2=∠1,有∠1=∠2,∠ABC=90°,可以得出∠1=∠2=∠1=10°,有∠BAC=60°,可以得出AC=2AB,有O是AC的中点,就有BO=AO=CO=AC.就有△ABO为等边三角形,∠1=∠2就有AE⊥BO,由∠1=10°,∠ABE=90°,就有BE=AE=1,由勾股定理就可以求出AB的值,从而得出结论.【题目详解】∵AD∥BC,AE∥CD,∴四边形AECD是平行四边形.∵AD=DC,∴四边形AECD是菱形,∴AE=EC=CD=AD=2,∴∠2=∠1.∵∠1=∠2,∴∠1=∠2=∠1.∵∠ABC=90°,∴∠1+∠2+∠1=90°,∴∠1=∠2=∠1=10°,∴BE=AE,AC=2AB.本答案正确;∴BE=1,在Rt△ABE中,由勾股定理,得AB=.本答案正确;∵O是AC的中点,∠ABC=90°,∴BO=AO=CO=AC.∵∠1=∠2=∠1=10°,∴∠BAO=60°,∴△ABO为等边三角形.∵∠1=∠2,∴AE⊥BO.本答案正确;∵S△ADC=S△AEC=,∵CE=2,BE=1,∴CE=2BE,∴S△ACE=,∴S△ACE=2S△ABE,∴S△ADC=2S△ABE.本答案正确.∴正确的个数有4个.故选D.【题目点拨】本题考查了平行四边形的判定,菱形的判定及性质的运用,直角三角形的性质的性质的运用,勾股定理的运用,三角形的面积公式的运用,等边三角形的性质的运用.解答时证明出四边形AECD是菱形是解答本题的关键二、填空题(每题4分,共24分)13、6【解题分析】
作PD⊥BC,所以,设P(x,y).由,得平行四边形面积=BC•PD=xy.【题目详解】作PD⊥BC,所以,设P(x,y).由,得平行四边形面积=BC•PD=xy=6.故答案为:6【题目点拨】本题考核知识点:反比例函数意义.解题关键点:熟记反比例函数的意义.14、和1.【解题分析】
把x=1,和x=-1代入方程正好得出等式4a-1b-c=0和c-a-b=0,即可得出方程的解是x=1,x=-1,即可得出答案.【题目详解】∵ax1-bx-c=0(a≠0),把x=1代入得:4a-1b-c=0,即方程的一个解是x=1,把x=-1代入得:c-a-b=0,即方程的一个解是x=-1,故答案为:-1和1.【题目点拨】本题考查了一元二次方程的解的应用,主要是考查学生的理解能力.15、且【解题分析】分式方程去分母得:2(2x-a)=x-2,去括号移项合并得:3x=2a-2,解得:,∵分式方程的解为非负数,∴且,解得:a≥1且a≠4.16、<x<.【解题分析】
作出函数图象,联立方程组,解出方程组,结合函数图象即可解决问题.【题目详解】根据题意画出函数图象得,联立方程组和解得,,,结合图象可得,当时,<x<.故答案为:<x<.【题目点拨】本题考查了一次函数的图象和一次函数图象上点的坐标特征.正确求出一次函数的交点是解题的关键.17、3.6×10﹣1【解题分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】解:0.000036=3.6×10﹣1;故答案为:3.6×10﹣1.【题目点拨】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.18、【解题分析】
根据=,=,找出规律从而得解.【题目详解】解:∵直线,当x=0时,y=1,当y=0时,x=﹣1,∴OA1=1,OD=1,∴∠ODA1=45°,∴∠A2A1B1=45°,∴A2B1=A1B1=1,∴=,∵A2B1=A1B1=1,∴A2C1=2=,∴=,同理得:A3C2=4=,…,=,∴=,故答案为.三、解答题(共78分)19、(1)参加此次研学活动的老师有16人,学生有234人.(2)1;(3)学校共有4种租车方案,最少租车费用是2元.【解题分析】
(1)设参加此次研学活动的老师有人,学生有人,根据题意列出方程组即可求解;(2)利用租车总辆数=总人数÷35,再结合每辆车上至少要有2名老师,即可求解;(3)设租35座客车辆,则需租30座的客车辆,根据题意列出不等式组即可求解.【题目详解】解:(1)设参加此次研学活动的老师有人,学生有人,依题意,得:,解得:.答:参加此次研学活动的老师有16人,学生有234人.(2)(辆)(人),(辆),租车总辆数为1辆.故答案为:1.(3)设租35座客车辆,则需租30座的客车辆,依题意,得:,解得:.为正整数,,共有4种租车方案.设租车总费用为元,则,,的值随值的增大而增大,当时,取得最小值,最小值为2.学校共有4种租车方案,最少租车费用是2元.【题目点拨】本题考查的是二元一次方程组和不等式组的实际应用,熟练掌握两者是解题的关键.20、的面积是.【解题分析】
根据AB=10,BD=6,AD=8,利用勾股定理的逆定理求证△ABD是直角三角形,再利用勾股定理求出CD的长,然后利用三角形面积公式即可得出答案.【题目详解】解:∵BD2+AD2=62+82=102=AB2,∴△ABD是直角三角形,∴AD⊥BC,在Rt△ACD中,∴S△ABC=BC•AD=(BD+CD)•AD=×21×8=1,因此△ABC的面积为1.答:△ABC的面积是1.【题目点拨】此题主要考查学生对勾股定理和勾股定理的逆定理的理解和掌握,解答此题的关键是利用勾股定理的逆定理求证△ABD是直角三角形.21、(1)14;(2)四边形ABCD中有直角.【解题分析】
(1)根据四边形ABCD的面积=S矩形AEFH-S△AEB-S△BFC-S△CGD-S梯形AHGD即可得出结论;(2)四边形ABCD中有直角.根据勾股定理得到BC=2,CD=,BD=5,再根据勾股定理的逆定理即可求解.【题目详解】解:(1)如图,∵四边形ABCD的面积=S矩形AEFH-S△AEB-S△BFC-S△CGD-S梯形AHGD=5×5-×1×5-×2×4-×1×2-×(1+5)×1=14;(2)四边形ABCD中有直角.理由:连结BD,由勾股定理得:BC=2,CD=,BD=5,∵BD2=BC2+CD2,∴∠C=90°,∴四边形ABCD中有直角.【题目点拨】本题考查的是勾股定理的逆定理、勾股定理,熟知勾股定理及勾股定理的逆定理是解答此题的关键.22、(1)详见解析(2)【解题分析】
(1)题干中由且可知,一组对边平行且相等的四边形是平行四边形,则四边形BCDE是平行四边形,又知BE是直角三角形斜边的中线,直角三角形斜边的中线等于斜边的一半,则得到BE=ED,从而再用一组邻边相等的平行四边形是菱形证明即可.(2)通过DE∥BC和AC平分,可得到∠BAC=∠ACB,从而由等角对等边得到AB=BC=1,则此时直角三角形ABD,有一个执教不是斜边的一半,则可知这个直角边对应的角是30°,找到30°才是题目的突破口,然后依次得到角度的关系,证明得到三角形ACD是直角三角形,再用勾股定理解得AC的长.【题目详解】(1)证明:∵DE∥BC且DE=BC(已知)∴四边形BCDE是平行四边形(一组对边平行且相等的四边形是平行四边形)又∵E为直角三角形斜边AD边的中点(已知)∴BE=AD,即BE=DE(直角三角形斜边的中线等于斜边的一半)∴平行四边形四边形BCDE是菱形(一组邻边相等的平行四边形是菱形)(2)连接AC,如图可知:∵DE∥BC(已知)∴∠DAC=∠ACB(两直线平行内错角相等)又∵AC平分(已知)∴∠BAC=∠DAC(角平分线的定义)即∠BAC=∠ACB(等量代换)∴AB=BC=1(等角对等边)由(1)可知:AD=2ED=2BC=2在直角三角形中AB=1,AD=2∴∠ADB=30°(直角三角形中,若一个直角边是斜边一半,则这个直角边所对的角是30°)∴∠BAD=60°(直角三角形两锐角互余)即∠CAD=∠BAD=30°(角平分线的定义),∠ADC=2∠ADB=60°(菱形的性质)所以三角形ADC是直角三角形.则由可知:【题目点拨】本题为综合性的几何证明试题,运用到的重点知识点有,菱形的判定定理,菱形的性质,直角三角形斜边中线定理,30°角定理,勾股定理,注意证明过程中,条理清楚,因果对应,灵活运用才是解题关键.23、(1);(2)符合条件的的值为【解题分析】
(1)根据一元二次方程根的判别式即可求解;(2)根据根与系数的关系与完全平方公式的变形即可求解.【题目详解】解:(1),,得(2),,则,∴符合条件的的值为【题目点拨】此题主要考查一元二次方程的应用,解题的关键是熟知一元二次方程根的判别式及根与系数的关系.24、2km/h【解题分析】
求的汽车原来的平均速度,路程为410km,一定是根据时间来列等量关系,本题的关键描述语是:从甲地到乙地的时间缩短了1h.等量关系为:原来时间﹣现在时间=1.【题目详解】设汽车原来的平均速度是xkm/h,根据题意得:,解得:x=2.经检验:x=2是原方程的解.答:汽车原来的平均速度2km/h.25、(1)AF=DE,AF⊥DE,理由见详解;(2)四边形HIJK是正方形,补图、理由见详解.【解题分析】
(1)根据已知利用SAS判定△DAE≌△ABF,由全等三角形的判定方法可得到AF=DE,∠BAF=∠ADE,再由直角三角形的两个锐角互余和有两个角互余的三角形是直角三角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度智能仓储机器人采购与服务合同
- 2024中国节能环保集团限公司党委管理领导岗位招聘3人易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国电建集团贵州工程限公司招聘200人招聘易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国华西企业限公司招聘221人易考易错模拟试题(共500题)试卷后附参考答案
- 2024东风本田汽车限公司招聘200人易考易错模拟试题(共500题)试卷后附参考答案
- 2024上海杨浦区扬帆劳动保障服务中心协调员招聘50人易考易错模拟试题(共500题)试卷后附参考答案
- 2024“才聚齐鲁成就未来”山东铁投集团春季社会招聘23人易考易错模拟试题(共500题)试卷后附参考答案
- 癌细胞的主要特征及防治课件
- 2024年度版权保护及诉讼合同3篇
- 2024年度云计算服务与数据中心建设合同
- 第八节 路基路面最弱强度(CBR值)现场测试技术
- 输电线路设计—导线风偏计算及校验实用教案
- 101阿里巴巴国际站概述ppt课件
- 03古希腊戏剧PPT课件
- 全自动胶囊填充机培训(课堂PPT)
- 高速铁路桥梁救援疏散通道施工方案
- 六年级上册数学求百分率《分数、小数化百分数》
- 车库顶板行车及堆载方案
- 木屋工程施工组织设计
- 工程施工合同纠纷和解协议书
- 宋联可-高效团队建设与执行力
评论
0/150
提交评论