版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届黑龙江省佳木斯市同江市场直中学八年级数学第二学期期末考试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.把a3-4a分解因式正确的是A.a(a2-4) B.a(a-2)2C.a(a+2)(a-2) D.a(a+4)(a-4).2.一次函数的图象经过()A.一、二、三象限 B.一、二、四象限C.二、三、四象限 D.一、三、四象限3.随机抽取10名八年级同学调查每天使用零花钱的情况,结果如下表,则这10名同学每天使用零花钱的中位数是()每天使用零花钱的情况
单位(元)2345人数1522A.2元 B.3元 C.4元 D.5元4.如图,平行四边形ABCD的两条对角线相交于点O,点E是AB边的中点,图中已有三角形与△ADE面积相等的三角形(不包括△ADE)共有()个.A.3 B.4 C.5 D.65.如图,在Rt△ABC中,AC=6,BC=8,D为斜边AB上一动点,DE⊥BC,DF⊥AC,垂足分别为E、F.则线段EF的最小值为()A.6 B. C.5 D.6.要使分式有意义,则x的取值应满足()A.x≠2 B.x≠1 C.x=2 D.x=﹣17.已知函数y=(k-3)x,y随x的增大而减小,则常数k的取值范围是()A.k>3 B.k<3 C.k<-3 D.k<08.早晨,小张去公园晨练,下图是他离家的距离y(千米)与时间t(分钟)的函数图象,根据图象信息,下列说法正确的是()A.小张去时所用的时间多于回家所用的时间 B.小张在公园锻炼了20分钟C.小张去时的速度大于回家的速度 D.小张去时走上坡路,回家时走下坡路9.下列各式的计算中,正确的是()A. B. C. D.10.如图,在▱ABCD中,连接AC,∠ABC=∠CAD=45°,AB=2,则BC的长是()A. B.2 C.2 D.4二、填空题(每小题3分,共24分)11.如图,点在双曲线上,为轴上的一点,过点作轴于点,连接、,若的面积是3,则__.12.已知△ABC的一边长为10,另两边长分别是方程x214x480的两个根若用一圆形纸片将此三角形完全覆盖,则该圆形纸片的最小半径是_______________.13.若二次根式在实数范围内有意义,则x的取值范围是_____.14.甲、乙两人玩扑克牌游戏,游戏规则是:从牌面数字分别为5,6,7的三张扑克牌中,随机抽取一张,放回后,再随机抽取一张,若所抽取的两张牌牌面数字的积为奇数,则甲获胜;若所抽取的两张牌牌面数字的积为偶数,则乙获胜.这个游戏________.(填“公平”或“不公平”)15.如图所示,工人师傅做一个矩形铝合金窗框分下面三个步骤进行先截出两对符合规格的铝合金窗料(如图①所示),使AB=CD,EF=GH.(1)摆放成如图②的四边形,则这时窗框的形状是平行四边形,它的依据是.(2)将直尺紧靠窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④,说明窗框合格,这时窗框是矩形,它的依据是.16.如图,四边形ABCD是矩形,对角线AC、BD相交于点O,如果再添加一个条件,即可推出该四边形是正方形,这个条件可以是_________.17.如图,平行四边形OABC的顶点O、A、C的坐标分别是(0,0)、(6,0)、(2,4),则点B的坐标为_____.18.如图,身高1.6米的小明站在处测得他的影长为3米,影子顶端与路灯灯杆的距离为12米,则灯杆的高度为_______米.三、解答题(共66分)19.(10分)感知:如图(1),已知正方形ABCD和等腰直角△EBF,点E在正方形BC边上,点F在AB边的延长线上,∠EBF=90°,连结AE、CF.易证:∠AEB=∠CFB(不需要证明).探究:如图(2),已知正方形ABCD和等腰直角△EBF,点E在正方形ABCD内部,点F在正方形ABCD外部,∠EBF=90°,连结AE、CF.求证:∠AEB=∠CFB应用:如图(3),在(2)的条件下,当A、E、F三点共线时,连结CE,若AE=1,EF=2,则CE=______.20.(6分)已知,正方形ABCD中,,绕点A顺时针旋转,它的两边长分别交CB、DC或它们的延长线于点MN,于点H.如图,当点A旋转到时,请你直接写出AH与AB的数量关系;如图,当绕点A旋转到时,中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明.21.(6分)如图,在平行四边形中,已知点在上,点在上,且.求证:.22.(8分)王华同学要证明命题“对角线相等的平行四边形是矩形”是正确的,她先作出了如图所示的平行四边形ABCD,并写出了如下不完整的已知和求证.已知:如图1,在平行四边形ABCD中,
,求证:平行四边形ABCD是
.(1)在方框中填空,以补全已知和求证;(2)按王晓的想法写出证明过程;证明:23.(8分)如图,在四边形中,且,四边形的对角线,相交于,点,分别是,的中点,求证:.24.(8分)对于平面直角坐标系xOy中的点P和正方形给出如下定义:若正方形的对角线交于点O,四条边分别和坐标轴平行,我们称该正方形为原点正方形,当原点正方形上存在点Q,满足PQ≤1时,称点P为原点正方形的友好点.(1)当原点正方形边长为4时,①在点P1(0,0),P2(-1,1),P3(3,2)中,原点正方形的友好点是__________;②点P在直线y=x的图象上,若点P为原点正方形的友好点,求点P横坐标的取值范围;(2)乙次函数y=-x+2的图象分别与x轴,y轴交于点A,B,若线段AB上存在原点正方形的友好点,直接写出原点正方形边长a的取值范围.25.(10分)为了了解某校初中各年级学生每天的平均睡眠时间(单位:h,精确到1h),抽样调查了部分学生,并用得到的数据绘制了下面两幅不完整的统计图.请你根据图中提供的信息,回答下列问题:(1)求出扇形统计图中百分数a的值为,所抽查的学生人数为.(2)求出平均睡眠时间为8小时的人数,并补全频数直方图.(3)求出这部分学生的平均睡眠时间的众数和平均数.(4)如果该校共有学生1200名,请你估计睡眠不足(少于8小时)的学生数.26.(10分)已知一次函数y=(3-k)x-2k2+18.(1)k为何值时,它的图象经过原点?(2)k为何值时,图象经过点(0,-2)?(3)k为何值时,y随x的增大而减小?
参考答案一、选择题(每小题3分,共30分)1、C【解题分析】
先提取公因式a,再对余下的多项式利用平方差公式继续分解.【题目详解】a3-4a=a(a2-4)=a(a+2)(a-2).故选C.【题目点拨】提公因式法与公式法的综合运用.2、D【解题分析】
根据一次函数的解析式得出k及b的符号,再根据一次函数的性质进行解答即可.【题目详解】解:∵一次函数中k=2>0,b=-4<0,
∴此函数的图象经过一、三、四象限.
故选:D.【题目点拨】本题考查的是一次函数的性质,正确理解一次函数y=kx+b(k≠0)的图象与k,b的关系是解题的关键.3、B【解题分析】
将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【题目详解】解:共10名同学,中位数是第5和第6的平均数,故中位数为3,
故选B.【题目点拨】本题考查中位数,正确理解中位数的意义是解题的关键.4、C【解题分析】试题分析:首先利用平行四边形的性质证明△ADB≌△CBD,从而得到△CDB,与△ADB面积相等,再根据DO=BO,AO=CO,利用三角形的中线把三角形的面积分成相等的两部分可得△DOC、△COB、△AOB、△ADO面积相等,都是△ABD的一半,根据E是AB边的中点可得△ADE、△DEB面积相等,也都是△ABD的一半,从而得到S△DOC=S△COB=S△DOA=S△AOB=S△ADE=S△DEB=S△ADB.不包括△ADE共有5个三角形与△ADE面积相等,故选C.考点:平行四边形的性质5、D【解题分析】
连接CD,判断四边形是矩形,得到,在根据垂线段最短求得最小值.【题目详解】如图,连接CD,∵,,∴四边形是矩形,,由垂线段最短可得时线段的长度最小,∵;∴;∵四边形是矩形∴故选:.【题目点拨】本题考查了矩形的判定和性质,勾股定理和直角三角形中面积的代换,解题的关键在于连接CD,判断四边形是矩形.6、A【解题分析】
根据分式有意义的条件是分母不为0列出不等式,解可得自变量x的取值范围,【题目详解】由题意得,x-2≠0,解得,x≠2,故选A.【题目点拨】本题主要考查了分式有意义的条件,掌握分式有意义的条件是分母不等于0是解题的关键.7、B【解题分析】
根据一次项系数小于0时,y随x的增大而减小,即可解题.【题目详解】解:由题可知k-3<0,解得:k<3,故选B.【题目点拨】本题考查了一次函数的增减性,属于简单题,熟悉概念是解题关键.8、C【解题分析】
根据图象可以得到小张去时所用的时间和回家所用的时间,在公园锻炼了多少分钟,也可以求出去时的速度和回家的速度,根据C的速度可以判断去时是否走上坡路,回家时是否走下坡路.【题目详解】解:A、小张去时所用的时间为6分钟,回家所用的时间为10分钟,故选项错误;B、小张在公园锻炼了20-6=14分钟,故选项错误;C、小张去时的速度为1÷=10千米每小时,回家的速度的为1÷=6千米每小时,故选项正确;D、据(1)小张去时走下坡路,回家时走上坡路,故选项错误.故选C.【题目点拨】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.9、B【解题分析】
根据同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项分析判断后利用排除法求解.【题目详解】A、应为x4÷x4=1,故本选项错误;B、a2•a2=a4,正确;C、应为(a3)2=a6,故本选项错误;D、a2与a3不是同类项,不能合并,故本选项错误.故选:B.【题目点拨】本题主要考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方,很容易混淆,一定要记准法则才能做题.10、C【解题分析】
根据平行四边形的性质可得出CD=AB=、∠D=∠CAD=45°,由等角对等边可得出AC=CD=,再利用勾股定理即可求出BC的长度.【题目详解】解:∵四边形ABCD是平行四边形,
∴CD=AB=,BC=AD,∠D=∠ABC=∠CAD=45°,
∴AC=CD=,∠ACD=90°,即△ACD是等腰直角三角形,
∴BC=AD==1.
故选B.【题目点拨】本题考查了平行四边形的性质、等腰三角形的性质以及勾股定理,根据平行四边形的性质结合∠ABC=∠CAD=45°,找出△ACD是等腰直角三角形是解题的关键.二、填空题(每小题3分,共24分)11、-6【解题分析】
连结OA,如图,利用三角形面积公式得到S△OAC=S△CAB=3,再根据反比例函数的比例系数k的几何意义得到,然后去绝对值即可得到满足条件的k的值.【题目详解】解:连结,如图,轴,,,而,,,.故答案为:.【题目点拨】本题考查了反比例函数的比例系数k的几何意义:在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.12、1【解题分析】
求出方程的解,根据勾股定理的逆定理得出三角形ABC是直角三角形,根据已知得出圆形正好是△ABC的外接圆,即可求出答案.【题目详解】解:解方程x2-14x+48=0得:x1=6,x2=8,
即△ABC的三边长为AC=6,BC=8,AB=10,
∵AC2+BC2=62+82=100,AB2=100,
∴AB2=AC2+BC2,
∴∠C=90°
∵若用一圆形纸片将此三角形完全覆盖,
则该圆形纸片正好是△ABC的外接圆,
∴△ABC的外接圆的半径是AB=1,
故答案为1.【题目点拨】本题考查勾股定理的逆定理,三角形的外接圆与外心,解一元二次方程的应用.13、x>2019【解题分析】
根据二次根式的定义进行解答.【题目详解】在实数范围内有意义,即x-20190,所以x的取值范围是x2019.【题目点拨】本题考查了二次根式的定义,熟练掌握二次根式的定义是本题解题关键.14、不公平.【解题分析】试题分析:先根据题意画出树状图,然后根据概率公式求解即可.画出树状图如下:共有9种情况,积为奇数有4种情况所以,P(积为奇数)=即甲获胜的概率是所以这个游戏不公平.考点:游戏公平性的判断点评:解题的关键是熟练掌握概率的求法:概率=所求情况数与总情况数的比值.15、【答题空1】两组对边分别相等的四边形是平行四边形【答题空2】有一个角是直角的平行四边形是矩形【解题分析】
(1)∵AB=CD,EF=GH,∴四边形为平行四边形.(两组对边相等的四边形为平行四边形)(2)由(2)知四边形为平行四边形,∵∠C为直角,∴四边形为矩形.(一个角为直角的平行四边形为矩形)【题目点拨】根据平行四边形的判定,两组对边分别相等的四边形为平行四边形,即可得出②的结论,当把一个角变为直角时,根据一个角为直角的平行四边形为矩形即可得出③的结论.16、AC⊥BD【解题分析】
对角线互相垂直的矩形是正方形,根据正方形的判定定理添加即可.【题目详解】∵四边形ABCD是矩形,对角线AC、BD相交于点O,∴当AC⊥BD时,四边形ABCD是正方形,故答案为:AC⊥BD.【题目点拨】此题考查正方形的判定定理,熟记定理并运用解题是关键.17、(8,4)【解题分析】
首先证明OA=BC=6,根据点C坐标即可推出点B坐标;【题目详解】解:∵A(6,0),∴OA=6,∵四边形OABC是平行四边形,∴OA=BC=6,∵C(2,4),∴B(8,4),故答案为(8,4).【题目点拨】本题考查平行四边形的性质、坐标与图形的性质等知识,解题的关键是熟练掌握基本知识属于中考常考题型.18、【解题分析】
根据在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似解答.【题目详解】解:如图:∵AB∥DE,∴CD:BC=DE:AB,∴1.6:AB=3:12,∴AB=6.1米,∴灯杆的高度为6.1米.答:灯杆的高度为6.1米.故答案为:6.1.【题目点拨】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求出灯杆的高度,体现了方程的思想.三、解答题(共66分)19、感知:见解析;探究:见解析;应用:.【解题分析】
感知:先判断出∠ABC=∠CBF=90°,AB=BC,进而判断出BE=BF,得出△ABE≌△CBF(SAS)即可得出结论;探究:先判断出∠ABE=∠CBF,进而得出△ABE≌△CBF(SAS),即可得出结论;应用:先求出CF=1,再判断出∠CFE=90°,利用勾股定理即可得出结论.【题目详解】解:感知:∵四边形ABCD是正方形,∴∠ABC=∠CBF=90°,AB=BC,∵△BEF是等腰直角三角形,∴BE=BF,∴△ABE≌△CBF(SAS),∴∠AEB=∠CFB;探究:∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∵△BEF是等腰直角三角形,∴BE=BF,∠EBF=90°=∠ABC,∴∠ABE=∠CBF,∴△ABE≌△CBF(SAS),∴∠AEB=∠CFB;应用:由(2)知,△ABE≌△CBF,∠BFC=∠BEA,∴CF=AE=1,∵△BEF是等腰直角三角形,∴∠BFE=∠BEF=45°,∴∠AEB=135°,∴∠BFC=135°,∴∠CFE=∠BFC-∠BFE=90°,在Rt△CFE中,CF=1,EF=2,根据勾股定理得,,故答案为:.【题目点拨】此题是四边形综合题,主要考查了正方形的性质,等腰直角三角形的性质,全等三角形的判定和性质,勾股定理,判断出△ABE≌△CBF(SAS),是解本题的关键.20、;(2)数量关系还成立.证明见解析.【解题分析】
(1)由题意可证△ABM≌△ADN,可得AM=AN,∠BAM=∠DAN=22.5°,再证△ABM≌△AMH可得结论;(2)延长CB至E,使BE=DN,可证△ABE≌△ADN,可得AN=AE,∠BAE=∠DAN,可得∠EAM=∠MAN=45°且AM=AM,AE=AN,可证△AME≌△AMN,则结论可证.【题目详解】,理由如下:是正方形,且,≌,,,,,,,,,且,,≌,;数量关系还成立.如图,延长CB至E,使,,,,≌,,,,即,且,,≌,,≌,,.【题目点拨】本题考查了旋转的性质,正方形的性质,全等三角形的判定和性质,正确添加辅助线构建全等三角形是解题的关键.21、证明见解析.【解题分析】
由“平行四边形ABCD的对边平行且相等”的性质推知AB=CD,AB∥CD.然后根据图形中相关线段间的和差关系求得BE=FD,易证四边形EBFD是平行四边形.【题目详解】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∵AE=CF.∴BE=FD,BE∥FD,∴四边形EBFD是平行四边形,∴DE=BF.【题目点拨】本题考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.22、(1)AC=BD,矩形;(2)证明详见解析.【解题分析】
(1)根据对角线相等的平行四边形是矩形,可得答案;(2)根据全等三角形的判定与性质,可得∠ADC与∠BCD的关系,根据平行四边形的邻角互补,可得∠ADC的度数,根据矩形的判定,可得答案.【题目详解】(1)解:在平行四边形ABCD中,AC=BD,求证:平行四边形ABCD是矩形;(2)证明:∵四边形ABCD是平行四边形,∴AD∥CB,AD=BC.在△ADC和△BCD中,∵AC=BD,AD=BC,CD=DC,∴△ADC≌△BCD.∴∠ADC=∠BCD.又∵AD∥CB,∴∠ADC+∠BCD=180°.∴∠ADC=∠BCD=90°.∴平行四边形ABCD是矩形.【题目点拨】本题考查了矩形的判定,利用全等三角形的判定与性质得出∠ADC=∠BCD是解题关键.23、见解析【解题分析】
据平行四边形的性质对角线互相平分得出OA=OC,OB=OD,利用中点的意义得出OE=OF,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定BFDE是平行四边形,从而得出BE=DF.【题目详解】解:证明:连接BF、DE,如图所示:∵,,∴四边形ABCD是平行四边形,∴OA=OC,OB=OD,
∵E、F分别是OA、OC的中点,
∴OE=OA,OF=OC,
∴OE=OF,
∴四边形BFDE是平行四边形,
∴BE=DF.【题目点拨】本题考查了平行四边形的基本性质和判定定理的运用.性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.24、(1)①P2,P3,②1≤x≤或≤x≤-1;(2)2-≤a≤1.【解题分析】
(1)由已知结合图象,找到点P所在的区域;
(2)分别求出点A与B的坐标,由线段AB的位置,通过做圆确定正方形的位置.【题目详解】解:(1)①∵原点正方形边长为4,
当P1(0,0)时,正方形上与P1的最小距离是2,故不存在Q使P1Q≤1;
当P2(-1,1)时,存在Q(-2,1),使P2Q≤1;
当P3(3,2)时,存在Q(2,2),使P3Q≤1;
故答案为P₂、P₃;
②如图所示:阴影部分就是原点正方形友好点P的范围,
由计算可得,点P横坐标的取值范围是:
1≤x≤2+或
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 员工劳动用工协议书样本
- 借款资格评估合同
- 毕业生档案保密协议
- 护坡工程合同范本
- 统编版语文五年级上册 第一单元 口语交际一制定班级公约+公开课一等奖创新教学设计
- 内部审计制度-内部审计制度模版2
- 一次性工伤赔偿协议书的签订流程
- 场地出租合同协议书范例
- 房地产投资协议范本-合同范本
- 2024年门窗制作承包合同范本
- 《义务教育物理课程标准》测试题及详细答案2022年修订版
- 《清理厨房》课件劳动四年级下册人教版
- 2024至2030年中国冷弯设备行业市场需求分析及投资发展潜力报告
- 2024年山东省泰安市中考英语真题(原卷版)
- 人教PEP版(2024)三年级上册英语Unit 5 The colourful world单元整体教学设计(共6课时)
- 高中语文(统编版)选必中册 第三单元教材分析解读课件
- 扬州市梅岭教育集团2023-2024学年初一上学期10月数学试卷及答案
- 《批判性思维原理和方法》全套教学课件
- 2024湖南合源水务环境科技公司招聘33人(高频重点提升专题训练)共500题附带答案详解
- 2024-2030年中国低空旅游行业市场发展分析及发展趋势与投资前景研究报告
- 中医基础理论-初级课件
评论
0/150
提交评论