版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省泉州市晋江市泉州五中学桥南校区2024届八年级数学第二学期期末考试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图所示,矩形ABCD的面积为10cm2,它的两条对角线交于点O1,以AB、AO1为邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交于点A.1cm2 B.2cm22.某特快列车在最近一次的铁路大提速后,时速提高了30千米小时,则该列车行驶350千米所用的时间比原来少用1小时,若该列车提速前的速度是x千米小时,下列所列方程正确的是A. B.C. D.3.方程的解是()A. B. C. D.或4.如图中的图象(折线ABCDE)描述了一汽车在某一直道上的行驶过程中,汽车离出发地的距离s(千米)和行驶时间t(小时)之间的函数关系.根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在整个行驶过程中的平均速度为1603千米/④汽车自出发后3小时至4.5小时之间行驶的速度在逐渐减少.其中正确的说法有()A.1个 B.2个 C.3个 D.4个5.为了大力宣传节约用电,某小区随机抽查了10户家庭的月用电量情况,统计如下表,关于这10户家庭的月用电量说法正确的是()月用电量(度)2530405060户数12421A.极差是3 B.众数是4 C.中位数40 D.平均数是20.56.如图,点A是反比例函数(x<0)的图象上的一点,过点A作平行四边形ABCD,使B、C在x轴上,点D在y轴上,则平行四边形ABCD的面积为()A.1 B.3 C.6 D.127.某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的这三项成绩(百分制)分别为95分,90分,88分,则小彤这学期的体育成绩为()A.89分 B.90分 C.92分 D.93分8.下列等式中,计算正确的是()A. B.C. D.9.若代数式在实数范围内有意义,则实数的取值范围是()A. B. C. D.10.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为PQ,则线段BQ的长度为()A. B. C.4 D.511.已知点(-2,y1),(1,0),(3,y2)都在一次函数y=kx-2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2 B.y1<0<y2 C.y1<y2<0 D.y2<0<y112.已知□ABCD,根据图中尺规作图的痕迹,判断下列结论中不一定成立的是()A.∠DAE=∠BAE B.∠DEA=∠DAB C.DE=BE D.BC=DE二、填空题(每题4分,共24分)13.两个面积都为的正方形纸片,其中一个正方形的顶点与另一个正方形对角线的交点重合,则两个正方形纸片重叠部分的面积为__________.14.如图,若△DEF是由△ABC沿BC方向平移得到的,EF=5,EC=3,则平移的距离是_____.15.公路全长为skm,骑自行车t小时可到达,为了提前半小时到达,骑自行车每小时应多走_____________.16.当二次根式的值最小时,=______.17.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)185180185180方差3.63.67.48.1根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择___________.18.如图,在菱形中,,的垂直平分线交对角线于点,垂足为点,连接,,则______.三、解答题(共78分)19.(8分)(问题原型)如图,在中,对角线的垂直平分线交于点,交于点,交于点.求证:四边形是菱形.(小海的证法)证明:是的垂直平分线,,(第一步),(第二步).(第三步)四边形是平行四边形.(第四步)四边形是菱形.(第五步)(老师评析)小海利用对角线互相平分证明了四边形是平行四边形,再利用对角线互相垂直证明它是菱形,可惜有一步错了.(挑错改错)(1)小海的证明过程在第________步上开始出现了错误.(2)请你根据小海的证题思路写出此题的正确解答过程,20.(8分)正方形ABCD中,点E是BD上一点,过点E作EF⊥AE交射线CB于点F,连结CE.(1)已知点F在线段BC上.①若AB=BE,求∠DAE度数;②求证:CE=EF;(2)已知正方形边长为2,且BC=2BF,请直接写出线段DE的长.21.(8分)(1)如图1,已知正方形ABCD,点M和N分别是边BC,CD上的点,且BM=CN,连接AM和BN,交于点P.猜想AM与BN的位置关系,并证明你的结论;(2)如图2,将图(1)中的△APB绕着点B逆时针旋转90º,得到△A′P′B,延长A′P′交AP于点E,试判断四边形BPEP′的形状,并说明理由.22.(10分)如图,每个小正方形的边长都为1,四边形ABCD的顶点都在小正方形的顶点上.(1)求四边形ABCD的面积;(2)∠BCD是直角吗?说明理由.23.(10分)每年5月的第二个星期日即为母亲节,“父母恩深重,恩怜无歇时”,许多市民喜欢在母亲节为母亲送鲜花,感恩母亲,祝福母亲.节日前夕,某花店采购了一批鲜花礼盒,成本价为30元每件,分析上一年母亲节的鲜花礼盒销售情况,得到了如下数据,同时发现每天的销售量(件)是销售单价(元/件)的一次函数.
销售单价(元/件)…30405060…每天销售量(件)…350300250200…(1)求出与的函数关系;(2)物价局要求,销售该鲜花礼盒获得的利润不得高于100﹪:①当销售单价取何值时,该花店销售鲜花礼盒每天获得的利润为5000元?(利润=销售总价-成本价);②试确定销售单价取何值时,花店销该鲜花礼盒每天获得的利润(元)最大?并求出花店销该鲜花礼盒每天获得的最大利润.24.(10分)已知一次函数y=(1m-1)x+m-1.(1)若此函数图象过原点,则m=________;(1)若此函数图象不经过第二象限,求m的取值范围.25.(12分)八(1)班数学老师将本班某次参加的数学竞赛成绩(得分取整数,满分100分)进行整理统计后,制成如下的频数直方图和扇形统计图,请根据统计图提供的信息,解答下列问题:(1)在分数段70.5~80.5分的频数、频率分别是多少?(2)m、n、的值分别是多少?26.如图①,在△ABC中,AB=AC,过AB上一点D作DE∥AC交BC于点E,以E为顶点,ED为一边,作∠DEF=∠A,另一边EF交AC于点F.(1)求证:四边形ADEF为平行四边形;(2)当点D为AB中点时,判断▱ADEF的形状;(3)延长图①中的DE到点G,使EG=DE,连接AE,AG,FG,得到图②,若AD=AG,判断四边形AEGF的形状,并说明理由.
参考答案一、选择题(每题4分,共48分)1、D【解题分析】
因为矩形的对边和平行四边形的对边互相平行,且矩形的对角线和平行四边形的对角线都互相平分,所以上下两平行线间的距离相等,平行四边形的面积等于底×高,所以第一个平行四边形是矩形的一半,第二个平行四边形是第一个平行四边形的一半依次可推下去.【题目详解】解:根据题意分析可得:∵四边形ABCD是矩形,∴O1A=O1C,∵四边形ABC1O1是平行四边形,,∴O1C1∥AB,∴BE=12BC∵S矩形ABCD=AB•BC,S▱ABC1O1=AB•BE=12AB•BC∴面积为原来的12同理:每个平行四边形均为上一个面积的12故平行四边形ABC5O5的面积为:10×1故选:D.【题目点拨】此题综合考查了矩形及平行四边形的性质,要求学生审清题意,找出面积之间的关系,这类题型在中考中经常出现,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.2、B【解题分析】
根据题意可得等量关系为原来走350千米所用的时间提速后走350千米所用的时间,根据等量关系列式即可判断.【题目详解】解:原来走350千米所用的时间为,现在走350千米所用的时间为:,所以可列方程为:.故选:B.【题目点拨】本题考查分式方程的实际应用,根据题意找到提速前和提速后所用时间的等量关系是解决本题的关键.3、D【解题分析】
解:先移项,得x2-3x=0,再提公因式,得x(x-3)=0,从而得x=0或x=3故选D.【题目点拨】本题考查因式分解法解一元二次方程.4、B【解题分析】
根据函数图形的s轴判断行驶的总路程,从而得到①错误;根据s不变时为停留时间判断出②正确;根据平均速度=总路程÷总时间列式计算即可判断出③正确;再根据一次函数图象的实际意义判断出④错误.【题目详解】①由图可知,汽车共行驶了120×2=240千米,故本小题错误;②汽车在行驶途中停留了2-1.5=0.5小时,故本小题正确;③汽车在整个行驶过程中的平均速度为240千米/时,故本小题正确;④汽车自出发后3小时至4.5小时之间行驶离出发地越来越近,是匀速运动,故本小题错误;综上所述,正确的说法有②③共2个.故选:B.【题目点拨】本题考查了一次函数的应用,主要利用了路程、速度、时间三者之间的关系,准确识图,理解转折点的实际意义是解题的关键.5、C【解题分析】
极差、中位数、众数、平均数的定义和计算公式分别对每一项进行分析,即可得出答案.【题目详解】解:A、这组数据的极差是:60-25=35,故本选项错误;
B、40出现的次数最多,出现了4次,则众数是40,故本选项错误;
C、把这些数从小到大排列,最中间两个数的平均数是(40+40)÷2=40,则中位数是40,故本选项正确;
D、这组数据的平均数(25+30×2+40×4+50×2+60)÷10=40.5,故本选项错误;
故选:C.【题目点拨】本题考查了极差、平均数、中位数、众数的知识,解答本题的关键是掌握各知识点的概念.6、C【解题分析】
作AH⊥OB于H,根据平行四边形的性质得AD∥OB,则S平行四边形ABCD=S矩形AHOD,再根据反比例函数y=(k≠0)系数k的几何意义得到S矩形AHOD=1,所以有S平行四边形ABCD=1.【题目详解】作AH⊥OB于H,如图,
∵四边形ABCD是平行四边形ABCD,
∴AD∥OB,
∴S平行四边形ABCD=S矩形AHOD,
∵点A是反比例函数y=−(x<0)的图象上的一点,
∴S矩形AHOD=|-1|=1,
∴S平行四边形ABCD=1.
故选C.【题目点拨】本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.7、B【解题分析】
根据加权平均数的计算公式列出算式,再进行计算即可.【题目详解】】解:根据题意得:
95×20%+90×30%+88×50%=90(分).
即小彤这学期的体育成绩为90分.
故选:B.【题目点拨】本题考查加权平均数,掌握加权平均数的计算公式是题的关键,是一道常考题.8、A【解题分析】
根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【题目详解】A、a10÷a9=a,正确;B、x3•x2=x5,故错误;C、x3-x2不是同类项不能合并,故错误;D、(-3xy)2=9x2y2,故错误;故选A.【题目点拨】本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.9、B【解题分析】
直接利用分式有意义的条件进而得出答案.【题目详解】∵代数式在实数范围内有意义,∴a-1≠0,∴a≠1.故选B.【题目点拨】此题主要考查了分式有意义的条件,正确把握定义是解题关键.10、C【解题分析】
设BQ=x,则由折叠的性质可得DQ=AQ=9-x,根据中点的定义可得BD=3,在Rt△BQD中,根据勾股定理可得关于x的方程,解方程即可求解.【题目详解】设BQ=x,由折叠的性质可得DQ=AQ=9﹣x,∵D是BC的中点,∴BD=3,在Rt△BQD中,x2+32=(9﹣x)2,解得:x=1.故线段BQ的长为1.故选:C.【题目点拨】此题考查了翻折变换(折叠问题),折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强.11、B【解题分析】
先根据点(1,0)在一次函数y=kx﹣1的图象上,求出k=1>0,再利用一次函数的性质判断出函数的增减性,然后根据三点横坐标的大小得出结论.【题目详解】∵点(1,0)在一次函数y=kx﹣1的图象上,∴k﹣1=0,∴k=1>0,∴y随x的增大而增大.∵﹣1<1<3,∴y1<0<y1.故选B.【题目点拨】本题考查了一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.也考查了一次函数的性质.12、C【解题分析】
根据角平分线的性质与平行四边形的性质对各选项进行逐一分析即可.【题目详解】解:A、由作法可知AE平分∠DAB,所以∠DAE=∠BAE,故本选项不符合题意;B、∵CD∥AB,∴∠DEA=∠BAE=∠DAB,故本选项不符合题意;C、无法证明DE=BE,故本选项符合题意;D、∵∠DAE=∠DEA,∴AD=DE,∵AD=BC,∴BC=DE,故本选项不符合题意.故选B.【题目点拨】本题考查的是作图−基本作图,熟知角平分线的作法和平行四边形的性质是解答此题的关键.二、填空题(每题4分,共24分)13、2【解题分析】
两个面积相等的正方形无论它们各自位置如何,当其中一个正方形的顶点与另一个正方形对角线的交点重合时,此时的重合部分面积总是等于其中一个正方形面积的四分之一,据此求解即可.【题目详解】∵无论正方形位置关系如何,其重合部分面积不变,仍然等于其中一个正方形面积的四分之一,∴重合部分面积=.故答案为:2.【题目点拨】本题主要考查了正方形性质,熟练掌握相关概念是解题关键.14、1【解题分析】
平移的距离为线段BE的长求出BE即可解决问题;【题目详解】∵BC=EF=5,EC=3,∴BE=1,∴平移距离是1,故答案为:1.【题目点拨】本题考查平移的性质,解题的关键是理解题意,灵活运用所学知识解决问题.15、-【解题分析】公路全长为skm,骑自行车t小时可到达,则速度为若提前半小时到达,则速度为则现在每小时应多走()16、1【解题分析】
直接利用二次根式的定义分析得出答案.【题目详解】∵二次根式的值最小,∴,解得:,故答案为:1.【题目点拨】本题主要考查了二次根式的定义,正确把握定义是解题关键.17、甲【解题分析】
首先比较平均数,平均数相同时选择方差较小的运动员参加即可.【题目详解】解:∵,∴从甲和丙中选择一人参加比赛,∵S甲2=S乙2<S丙2<S丁2,
∴选择甲参赛;
故答案为:甲.【题目点拨】此题考查了平均数和方差,正确理解方差与平均数的意义是解题关键.18、.【解题分析】
首先根据题意可得,即可得,根据,可得,再利用为的垂直平分线,进而计算的度数.【题目详解】由题可知,则,根据,可知,,又为的垂直平分线,.即,则,即.【题目点拨】本题只要考查菱形的性质,难度系数较低,应当熟练掌握.三、解答题(共78分)19、(1)二;(2)见解析.【解题分析】
(1)由垂直平分线性质可知,AC和EF并不是互相平分的,EF垂直平分AC,但AC并不平分EF,需要通过证明才可以得出,故第2步出现了错误;(2))根据平行四边形性质求出AD∥BC,推出,证,推出,可得四边形是平行四边形,推出菱形.【题目详解】(1)二(2)四边形是平行四边形,..是的垂直平分线,.在与中,..四边形是平行四边形..四边形是菱形.【题目点拨】本题考查菱形的判定,以及平行四边形的性质,关键是掌握对角线互相垂直的平行四边形是菱形20、(1)①22.5°;②证明见解析;(2)或.【解题分析】
(1)①先求得∠ABE的度数,然后依据等腰三角形的性质和三角形内角和定理求得∠BAE的度数,然后可求得∠DAE度数;②先利用正方形的对称性可得到∠BAE=∠BCE,然后在证明又∠BAE=∠EFC,通过等量代换可得到∠BCE=∠EFC;(2)当点F在BC上时,过点E作MN⊥BC,垂直为N,交AD于M.依据等腰三角形的性质可得到FN=CN,从而可得到NC的长,然后可得到MD的长,在Rt△MDE中可求得ED的长;当点F在CB的延长线上时,先根据题意画出图形,然后再证明EF=EC,然后再按照上述思路进行解答即可.【题目详解】(1)①∵ABCD为正方形,∴∠ABE=45°,又∵AB=BE,∴∠BAE(180°﹣45°)=67.5°,∴∠DAE=90°﹣67.5°=22.5°;②∵正方形ABCD关于BD对称,∴△ABE≌△CBE,∴∠BAE=∠BCE,又∵∠ABC=∠AEF=90°,∴∠BAE=∠EFC,∴∠BCE=∠EFC,∴CE=EF;(2)如图1,过点E作MN⊥BC,垂直为N,交AD于M,∵CE=EF,∴N是CF的中点,∵BC=2BF,∴,又∵四边形CDMN是矩形,△DME为等腰直角三角形,∴CN=DM=ME,∴EDDMCN;如图2,过点E作MN⊥BC,垂直为N,交AD于M,∵正方形ABCD关于BD对称,∴△ABE≌△CBE,∴∠BAE=∠BCE,又∵∠ABF=∠AEF=90°,∴∠BAE=∠EFC,∴∠BCE=∠EFC,∴CE=EF,∴FN=CN,又∵BC=2BF,∴FC=3,∴CN,∴EN=BN,∴DE,综上所述:ED的长为或.【题目点拨】本题考查了正方形的性质、全等三角形的性质和判定、等腰三角形的性质和判定、等腰直角三角形的性质,正确添加辅助线并灵活运用相关知识是解本题的关键.21、(1)AM⊥BN,证明见解析;(2)四边形BPEP′是正方形,理由见解析.【解题分析】
(1)易证△ABM≌△BCN,再根据角度的关系得到∠APB=90°,即可得到AM⊥BN;(2)根据旋转的性质及(1)得到四边形BPEP′是矩形,再根据BP=BP′,得到四边形BPEP′是正方形.【题目详解】(1)AM⊥BN证明:∵四边形ABCD是正方形,∴AB=BC,∠ABM=∠BCN=90°∵BM=CN,∴△ABM≌△BCN∴∠BAM=∠CBN∵∠CBN+∠ABN=90°,∴∠ABN+∠BAM=90°,∴∠APB=90°∴AM⊥BN.(2)四边形BPEP′是正方形.△A′P′B是△APB绕着点B逆时针旋转90º所得,∴BP=BP′,∠P′BP=90º.又由(1)结论可知∠APB=∠A′P′B=90°,∴∠BP′E=90°.所以四边形BPEP′是矩形.又因为BP=BP′,所以四边形BPEP′是正方形.【题目点拨】此题主要考查特殊平行四边形的性质与判定,解题的关键是熟知正方形的性质与判定.22、(1)四边形ABCD的面积=14;(2)是.理由见解析.【解题分析】
(1)根据四边形ABCD的面积=S矩形AEFH﹣S△AEB﹣S△BFC﹣S△CGD﹣S梯形AHGD即可得出结论;(2)先根据锐角三角函数的定义判断出∠FBC=∠DCG,再根据直角三角形的性质可得出∠BCF+∠DCG=90°,故可得出结论.【题目详解】(1)∵四边形ABCD的面积=S矩形AEFH﹣S△AEB﹣S△BFC﹣S△CGD﹣S梯形AHGD=5×51×52×41×2(1+5)×1=25=14;(2)是.理由如下:∵tan∠FBC,tan∠DCG,∴∠FBC=∠DCG.∵∠FBC+∠BCF=∠DCG+∠CDG=90°,∴∠BCF+∠DCG=90°,∴∠BCD是直角.【题目点拨】本题考查了分割法求面积和锐角三角函数的定义,熟知直角三角形的性质是解答此题的关键.23、见解析【解题分析】分析:(1)、利用待定系数法求出函数解析式;(2)①、根据题意列出方程,从而求出x的值,然后根据利润不高于100%得出答案;②、根据题意得出W与x的函数关系式,然后根据二次函数的增减性得出答案.详解:(1)设一次函数的解析式为y=kx+b,将和分别的代入y=kx+b得,,解得,所以,(2)①据题意得:,又因为,当销售单价时,该花店销售鲜花礼盒每天获得的利润为5000元.②据题意得,,,即当所以,当销售单价时,花店销该鲜花礼盒每天获得的利润(元)最大,最大利润.点睛:本题主要考查的是待定系数法求函数解析式、一元二次方程的应用以及二次函数的实际应用问题,属于中等难度的题型.解决这个问题的关键就是列出方程和函数解析式.24、(1)1;(1)-<m≤1.【解题分析】
(1)把坐标原点代入函数解析式进行计算即可得解;(1)根据图象不在第二象限,k>0,b0列出不等式组求解即可.【题目详解】(1)∵函数的图象经过原点,∴m-1=0,解得m=1;(1)∵函数的图象不过第二象限,∴,由①得,m>-,由②得,m1,所以,-<m1.【题目点拨】本题考查了两直线平行的问题,一次函数与系数的关系,一次函数图象上点的坐标特征,综合题但难度不大,熟记一次函数的性质是解题的关键.25、(1)在分数段
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 煤矿工程项目招投标委托
- 体育场馆租赁经营合同
- 仪器库房物资盘点制度
- 外企劳资管理实施办法
- 旅游开发项目投资指导
- 夏令营地活动安全保障协议
- 电子产品CEO聘用合同
- 机械制造厂房租赁
- 工厂门禁安装合同
- 医疗器械研发生产投标书
- 食品储存不当的危害合理储存避免食物中毒
- 湖北省鄂东南联考2023-2024学年高一上学期期中考试物理
- 2023-2024学年北京北师大实验中学初二(上)期中物理试卷(含答案)
- 医疗风险管理检查记录表(修)
- 湖南省娄底市涟源市2023-2024学年上学期期中质量检测九年级英语试卷
- 运动技能学习与控制课件第十一章运动技能的练习
- 国家开放大学《可编程控制器应用实训》形考任务5(实训五)参考答案
- 商业活动港风复古摩登年会主题方案
- 柴油采购投标方案(技术标)
- 3.8做改革创新生力军
- 挂篮检查验收记录表
评论
0/150
提交评论