版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2014年宁夏中考数学试卷一、选择题(下列每小题所给的四个答案中只有一个是正确的,每小题3分,共24分)1.(3分)(2014年宁夏)下列运算正确的是() A.a2•a3=a6 B.a8÷a4=a2 C.a3+a3=2a6 D. (a3)2=a62.(3分)(2014年宁夏)已知不等式组,其解集在数轴上表示正确的是() A. B. C. D.3.(3分)(2014年宁夏)一元二次方程x2﹣2x﹣1=0的解是() A.x1=x2=1 B.x1=1+,x2=﹣1﹣ C.x1=1+,x2=1﹣ D.x1=﹣1+,x2=﹣1﹣4.(3分)(2014年宁夏)实数a,b在数轴上的位置如图所示,以下说法正确的是() A.a+b=0 B.b<a C.ab>0 D. |b|<|a|5.(3分)(2014年宁夏)已知两点P1(x1,y1)、P2(x2,y2)在函数y=的图象上,当x1>x2>0时,下列结论正确的是() A.0<y1<y2 B.0<y2<y1 C.y1<y2<0 D. y2<y1<06.(3分)(2014年宁夏)甲种污水处理器处理25吨的污水与乙种污水处理器处理35吨的污水所用时间相同,已知乙种污水处理器每小时比甲种污水处理器多处理20吨的污水,求两种污水处理器的污水处理效率.设甲种污水处理器的污水处理效率为x吨/小时,依题意列方程正确的是() A. B. C. D. 7.(3分)(2014年宁夏)如图是一个几何体的三视图,则这个几何体的侧面积是() A.πcm2 B.2πcm2 C.6πcm2 D. 3πcm28.(3分)(2014年宁夏)已知a≠0,在同一直角坐标系中,函数y=ax与y=ax2的图象有可能是() A. B. C. D.二、填空题(每小题3分,共24分)9.(3分)(2014年宁夏)分解因式:x2y﹣y=.10.(3分)(2014年宁夏)菱形ABCD中,若对角线长AC=8cm,BD=6cm,则边长AB=cm.11.(3分)(2014年宁夏)下表是我区八个旅游景点6月份某日最高气温(℃)的统计结果.该日这八个旅游景点最高气温的中位数是℃.景点名称影视城苏峪口沙湖沙坡头水洞沟须弥山六盘山西夏王陵温度(℃)323028322828243212.(3分)(2014年宁夏)若2a﹣b=5,a﹣2b=4,则a﹣b的值为.13.(3分)(2014年宁夏)一个口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸出一个小球,然后放回,再随机地摸出一个小球,则两次摸出的小球标号的和等于4的概率是.14.(3分)(2014年宁夏)服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利20%,则这款服装每件的进价是元.15.(3分)(2014年宁夏)如图,在四边形ABCD中,AD∥BC,AB=CD=2,BC=5,∠BAD的平分线交BC于点E,且AE∥CD,则四边形ABCD的面积为.16.(3分)(2014年宁夏)如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上,用一个圆面去覆盖△ABC,能够完全覆盖这个三角形的最小圆面的半径是.三、解答题(共24分)17.(6分)(2014年宁夏)计算:(﹣)﹣2+﹣2sin45°﹣|1﹣|.18.(6分)(2014年宁夏)化简求值:(﹣)÷,其中a=1﹣,b=1+.19.(6分)(2014年宁夏)在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣4,5),C(﹣5,2).(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△ABC关于原点O成中心对称的△A2B2C2.20.(6分)(2014年宁夏)在△ABC中,AD是BC边上的高,∠C=45°,sinB=,AD=1.求BC的长.四、解答题(共48分)21.(6分)(2014年宁夏)如图是银川市6月1日至15日的空气质量指数趋势折线统计图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气质量重度污染.某人随机选择6月1日至6月14日中的某一天到达银川,共停留2天.(1)求此人到达当天空气质量优良的天数;(2)求此人在银川停留2天期间只有一天空气质量是重度污染的概率;(3)由折线统计图判断从哪天开始连续三天的空气质量指数方差最大(只写结论).22.(6分)(2014年宁夏)在平行四边形ABCD中,将△ABC沿AC对折,使点B落在B′处,AB′和CD相交于点O.求证:OA=OC.23.(8分)(2014年宁夏)在等边△ABC中,以BC为直径的⊙O与AB交于点D,DE⊥AC,垂足为点E.(1)求证:DE为⊙O的切线;(2)计算.24.(8分)(2014年宁夏)在平面直角坐标系中,已知反比例函数y=的图象经过点A(1,).(1)试确定此反比例函数的解析式;(2)点O是坐标原点,将线段OA绕O点顺时针旋转30°得到线段OB,判断点B是否在此反比例函数的图象上,并说明理由.25.(10分)(2014年宁夏)某花店计划下个月每天购进80只玫瑰花进行销售,若下个月按30天计算,每售出1只玫瑰花获利润5元,未售出的玫瑰花每只亏损3元.以x(0<x≤80)表示下个月内每天售出的只数,y(单位:元)表示下个月每天销售玫瑰花的利润.根据历史资料,得到同期下个月内市场销售量的频率分布直方图(每个组距包含左边的数,但不包含右边的数)如图所示:(1)求y关于x的函数关系式;(2)根据频率分布直方图,计算下个月内销售利润少于320元的天数;(3)根据历史资料,在70≤x<80这个组内的销售情况如下表:销售量/只707274757779天数123432计算该组内平均每天销售玫瑰花的只数.26.(10分)(2014年宁夏)在Rt△ABC中,∠C=90°,P是BC边上不同于B、C的一动点,过P作PQ⊥AB,垂足为Q,连接AP.(1)试说明不论点P在BC边上何处时,都有△PBQ与△ABC相似;(2)若AC=3,BC=4,当BP为何值时,△AQP面积最大,并求出最大值;(3)在Rt△ABC中,两条直角边BC、AC满足关系式BC=λAC,是否存在一个λ的值,使Rt△AQP既与Rt△ACP全等,也与Rt△BQP全等.2014年宁夏中考数学试卷参考答案与试题解析一、选择题(下列每小题所给的四个答案中只有一个是正确的,每小题3分,共24分)1.(3分)(2014年宁夏)下列运算正确的是() A.a2•a3=a6 B.a8÷a4=a2 C.a3+a3=2a6 D. (a3)2=a6【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】分别根据合并同类项、同底数幂的乘法和除法、幂的乘方法则进行计算即可.【解答】解:A、a2•a3=a5≠a6,故本选项错误;B、a8÷a4=a4≠a2,故本选项错误;C、a3+a3=2a3≠2a6,故本选项错误;D、(a3)2=a3×2=a6,正确.故选D.【点评】本题考查了合并同类项,同底数幂的乘法,同底数幂的除法,幂的乘方,熟练掌握运算法则是解题的关键,合并同类项时,只把系数相加减,字母与字母的次数不变.2.(3分)(2014年宁夏)已知不等式组,其解集在数轴上表示正确的是() A. B. C. D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】求出每个不等式的解集,找出不等式组的解集,再在数轴上把不等式组的解集表示出来,即可得出选项.【解答】解:∵解不等式①得:x>3,解不等式②得:x≥﹣1,∴不等式组的解集为:x>3,在数轴上表示不等式组的解集为:故选B.【点评】本题考查了在数轴上表示不等式组的解集,解一元一次不等式(组)的应用,关键是能正确在数轴上表示不等式组的解集.3.(3分)(2014年宁夏)一元二次方程x2﹣2x﹣1=0的解是() A.x1=x2=1 B.x1=1+,x2=﹣1﹣ C.x1=1+,x2=1﹣ D.x1=﹣1+,x2=﹣1﹣【考点】解一元二次方程-配方法.【专题】计算题.【分析】方程变形后,配方得到结果,开方即可求出值.【解答】解:方程x2﹣2x﹣1=0,变形得:x2﹣2x=1,配方得:x2﹣2x+1=2,即(x﹣1)2=2,开方得:x﹣1=±,解得:x1=1+,x2=1﹣.故选C.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.4.(3分)(2014年宁夏)实数a,b在数轴上的位置如图所示,以下说法正确的是() A.a+b=0 B.b<a C.ab>0 D. |b|<|a|【考点】实数与数轴.【分析】根据图形可知,a是一个负数,并且它的绝对是大于1小于2,b是一个正数,并且它的绝对值是大于0小于1,即可得出|b|<|a|.【解答】解:根据图形可知:﹣2<a<﹣1,0<b<1,则|b|<|a|;故选D.【点评】此题主要考查了实数与数轴,解答此题的关键是根据数轴上的任意两个数,右边的数总比左边的数大,负数的绝对值等于它的相反数,正数的绝对值等于本身.5.(3分)(2014年宁夏)已知两点P1(x1,y1)、P2(x2,y2)在函数y=的图象上,当x1>x2>0时,下列结论正确的是() A.0<y1<y2 B.0<y2<y1 C.y1<y2<0 D. y2<y1<0【考点】反比例函数图象上点的坐标特征.【专题】计算题.【分析】根据反比例函数图象上点的坐标特征得y1=,y2=,然后利用求差法比较y1与y2的大小.【解答】解:把点P1(x1,y1)、P2(x2,y2)代入y=得y1=,y2=,则y1﹣y2=﹣=,∵x1>x2>0,∴y1﹣y2=<0,即y1<y2.故选A.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.6.(3分)(2014年宁夏)甲种污水处理器处理25吨的污水与乙种污水处理器处理35吨的污水所用时间相同,已知乙种污水处理器每小时比甲种污水处理器多处理20吨的污水,求两种污水处理器的污水处理效率.设甲种污水处理器的污水处理效率为x吨/小时,依题意列方程正确的是() A. B. C. D. 【考点】由实际问题抽象出分式方程.【分析】设甲种污水处理器的污水处理效率为x吨/小时,则乙种污水处理器的污水处理效率为(x+20)吨/小时,根据甲种污水处理器处理25吨的污水与乙种污水处理器处理35吨的污水所用时间相同,列出方程.【解答】解:设甲种污水处理器的污水处理效率为x吨/小时,则乙种污水处理器的污水处理效率为(x+20)吨/小时,由题意得,=.故选B.【点评】本题考查了由实际问题抽象出分式方程,关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.7.(3分)(2014年宁夏)如图是一个几何体的三视图,则这个几何体的侧面积是() A.πcm2 B.2πcm2 C.6πcm2 D. 3πcm2【考点】圆锥的计算;由三视图判断几何体.【分析】俯视图为圆的只有圆锥,圆柱,球,根据主视图和左视图都是三角形可得到此几何体为圆锥,那么侧面积=底面周长×母线长÷2.【解答】解:此几何体为圆锥;∵半径为1cm,高为3cm,∴圆锥母线长为cm,∴侧面积=2πrR÷2=πcm2;故选A.【点评】本题考查了圆锥的计算,该三视图中的数据确定圆锥的底面直径和高是解本题的关键;本题体现了数形结合的数学思想,注意圆锥的高,母线长,底面半径组成直角三角形.8.(3分)(2014年宁夏)已知a≠0,在同一直角坐标系中,函数y=ax与y=ax2的图象有可能是() A. B. C. D.【考点】二次函数的图象;正比例函数的图象.【分析】本题可先由一次函数y=ax图象得到字母系数的正负,再与二次函数y=ax2的图象相比较看是否一致.(也可以先固定二次函数y=ax2图象中a的正负,再与一次函数比较.)【解答】解:A、函数y=ax中,a>0,y=ax2中,a>0,但当x=1时,两函数图象有交点(1,a),错误;B、函数y=ax中,a<0,y=ax2中,a>0,错误;C、函数y=ax中,a<0,y=ax2中,a<0,但当x=1时,两函数图象有交点(1,a),正确;D、函数y=ax中,a>0,y=ax2中,a<0,错误.故选C.【点评】函数中数形结合思想就是:由函数图象确定函数解析式各项系数的性质符号,由函数解析式各项系数的性质符号画出函数图象的大致形状.二、填空题(每小题3分,共24分)9.(3分)(2014年宁夏)分解因式:x2y﹣y=y(x+1)(x﹣1).【考点】提公因式法与公式法的综合运用.【分析】观察原式x2y﹣y,找到公因式y后,提出公因式后发现x2﹣1符合平方差公式,利用平方差公式继续分解可得.【解答】解:x2y﹣y,=y(x2﹣1),=y(x+1)(x﹣1).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.10.(3分)(2014年宁夏)菱形ABCD中,若对角线长AC=8cm,BD=6cm,则边长AB=5cm.【考点】菱形的性质;勾股定理.【专题】常规题型.【分析】根据菱形的对角线互相垂直平分求出对角线一半的长度,然后利用勾股定理列式计算即可得解.【解答】解:如图,∵菱形ABCD中,对角线长AC=8cm,BD=6cm,∴AO=AC=4cm,BO=BD=3cm,∵菱形的对角线互相垂直,∴在Rt△AOB中,AB===5cm.故答案为:5.【点评】本题主要考查了菱形的对角线互相垂直平分的性质,作出图形更形象直观且有助于理解.11.(3分)(2014年宁夏)下表是我区八个旅游景点6月份某日最高气温(℃)的统计结果.该日这八个旅游景点最高气温的中位数是29℃.景点名称影视城苏峪口沙湖沙坡头水洞沟须弥山六盘山西夏王陵温度(℃)3230283228282432【考点】中位数.【分析】根据中位数的概念求解.【解答】解:这组数据按照从小到大的顺序排列为:24,28,28,28,30,32,32,32,则中位数为:=29.故答案为:29.【点评】本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.12.(3分)(2014年宁夏)若2a﹣b=5,a﹣2b=4,则a﹣b的值为3.【考点】解二元一次方程组.【专题】计算题.【分析】已知两等式左右两边相加,变形即可得到a﹣b的值.【解答】解:将2a﹣b=5,a﹣2b=4,相加得:2a﹣b+a﹣2b=9,即3a﹣3b=9,解得:a﹣b=3.故答案为:3.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.13.(3分)(2014年宁夏)一个口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸出一个小球,然后放回,再随机地摸出一个小球,则两次摸出的小球标号的和等于4的概率是.【考点】列表法与树状图法.【专题】计算题.【分析】先画树状图展示所有16种等可能的结果数,其中两次摸出的小球标号的和等于4的占3种,然后根据概率的概念计算即可.【解答】解:如图,随机地摸出一个小球,然后放回,再随机地摸出一个小球,共有16种等可能的结果数,其中两次摸出的小球标号的和等于4的占3种,所有两次摸出的小球标号的和等于4的概率=.故答案为.【点评】本题考查了列表法或树状图法:利用列表法或树状图法展示所有等可能的结果数n,再找出某事件所占有的结果数m,然后利用概率的概念求得这个事件的概率=.14.(3分)(2014年宁夏)服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利20%,则这款服装每件的进价是200元.【考点】一元一次方程的应用.【分析】设这款服装每件的进价为x元,根据利润=售价﹣进价建立方程求出x的值就可以求出结论.【解答】解:设这款服装每件的进价为x元,由题意,得300×0.8﹣x=20%x,解得:x=200.故答案是:200.【点评】本题考查了列一元一次方程解实际问题的运用,销售问题的数量关系利润=售价﹣进价的运用,解答时根据销售问题的数量关系建立方程是关键.15.(3分)(2014年宁夏)如图,在四边形ABCD中,AD∥BC,AB=CD=2,BC=5,∠BAD的平分线交BC于点E,且AE∥CD,则四边形ABCD的面积为.【考点】平行四边形的判定与性质;等边三角形的判定与性质.【分析】根据题意可以判定△ABE是等边三角形,求得该三角形的高即为等腰梯形ABCD的高.所以利用梯形的面积公式进行解答.【解答】解:如图,过点A作AF⊥BC于点F.∵AD∥BC,∴∠DAE=∠AEB,又∵∠BAE=∠DAE,∴∠BAE=∠AEB,∵AE∥CD,∴∠AEB=∠C,∵AD∥BC,AB=CD=2,∴四边形是等腰梯形,∴∠B=∠C,∴△ABE是等边三角形,∴AB=AE=BE=2,∠B=60°,∴AF=AB•sin60°=2×=,∵AD∥BC,AE∥CD,∴四边形AECD是平行四边形,∴AD=EC=BC﹣BE=5﹣2=3,∴梯形的面积=(AD+BC)×AF=×(3+5)×=4.【点评】本题考查了等边三角形的判定和性质,平行四边形的判定和性质,等腰梯形的性质等.16.(3分)(2014年宁夏)如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上,用一个圆面去覆盖△ABC,能够完全覆盖这个三角形的最小圆面的半径是.【考点】三角形的外接圆与外心.【专题】网格型.【分析】根据题意得出△ABC的外接圆的圆心位置,进而利用勾股定理得出能够完全覆盖这个三角形的最小圆面的半径.【解答】解:如图所示:点O为△ABC外接圆圆心,则AO为外接圆半径,故能够完全覆盖这个三角形的最小圆面的半径是:.故答案为:.【点评】此题主要考查了三角形的外接圆与外心,得出外接圆圆心位置是解题关键.三、解答题(共24分)17.(6分)(2014年宁夏)计算:(﹣)﹣2+﹣2sin45°﹣|1﹣|.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】本题涉及负整指数幂、特殊角的三角函数值、二次根式化简三个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果【解答】解:原式=+﹣﹣(﹣1)=.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.(6分)(2014年宁夏)化简求值:(﹣)÷,其中a=1﹣,b=1+.【考点】分式的化简求值.【专题】计算题.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将a与b的值代入计算即可求出值.【解答】解:原式=•=•=,当a=1﹣,b=1+时,原式=.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(6分)(2014年宁夏)在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣4,5),C(﹣5,2).(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△ABC关于原点O成中心对称的△A2B2C2.【考点】作图-旋转变换;作图-轴对称变换.【专题】作图题.【分析】(1)根据网格结构找出点A、B、C关于y轴对称的点A1、B1、C1的位置,然后顺次连接即可;(2)根据网格结构找出点A、B、C关于原点对称的点A2、B2、C2的位置,然后顺次连接即可.【解答】解:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示.【点评】本题考查了利用旋转变换作图,利用轴对称变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.20.(6分)(2014年宁夏)在△ABC中,AD是BC边上的高,∠C=45°,sinB=,AD=1.求BC的长.【考点】解直角三角形;勾股定理.【分析】先由三角形的高的定义得出∠ADB=∠ADC=90°,再解Rt△ADB,得出AB=3,根据勾股定理求出BD=2,解Rt△ADC,得出DC=1;然后根据BC=BD+DC即可求解【解答】解:在Rt△ABD中,∵,又∵AD=1,∴AB=3,∵BD2=AB2﹣AD2,∴.在Rt△ADC中,∵∠C=45°,∴CD=AD=1.∴BC=BD+DC=+1.【点评】本题考查了三角形的高的定义,勾股定理,解直角三角形,难度中等,分别解Rt△ADB与Rt△ADC,得出BD=2,DC=1是解题的关键.四、解答题(共48分)21.(6分)(2014年宁夏)如图是银川市6月1日至15日的空气质量指数趋势折线统计图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气质量重度污染.某人随机选择6月1日至6月14日中的某一天到达银川,共停留2天.(1)求此人到达当天空气质量优良的天数;(2)求此人在银川停留2天期间只有一天空气质量是重度污染的概率;(3)由折线统计图判断从哪天开始连续三天的空气质量指数方差最大(只写结论).【考点】折线统计图;方差;概率公式.【分析】(1)根据折线图找出空气质量指数小于100的天数即可;(2)首先表示出连续两天的空气质量指数情况,再找出2天期间只有一天空气质量是重度污染的数量,再利用概率公式进行计算即可;(3)根据折线图可得5、6、7三天数据波动最大,因此方差最大.【解答】解:(1)此人到达当天空气质量优良的有:第1天、第2天、第3天、第7天、第12天,共5天;(2).此人在银川停留两天的空气质量指数是:(86,25),(25,57),(57,143),(143,220),(220,158),(158,40),(40,217),(217,160),(160,128),(128,167),(167,75),(75,106),(106,180),(180,175),共14个停留时间段,期间只有一天空气质量重度污染的有:第4天到、第5天到、第7天到及第8天到.因此,P(在银川停留期间只有一天空气质量重度污染)=;(3)根据折线图可得从第5天开始的第5天、第6天、第7天连续三天的空气质量指数方差最大.【点评】此题主要考查了看折线图,以及概率,关键是正确从折线图中获取所需要的信息.22.(6分)(2014年宁夏)在平行四边形ABCD中,将△ABC沿AC对折,使点B落在B′处,AB′和CD相交于点O.求证:OA=OC.【考点】平行四边形的性质;翻折变换(折叠问题).【专题】证明题.【分析】由在平行四边形ABCD中,将△ABC沿AC对折,使点B落在B′处,即可求得∠DCA=∠B′AC,则可证得OA=OC.【解答】证明:∵△AB′C是由△ABC沿AC对折得到的图形,∴∠BAC=∠B′AC,∵在平行四边形ABCD中,AB∥CD,∴∠BAC=∠DCA,∴∠DCA=∠B′AC,∴OA=OC.【点评】此题考查了平行四边形的性质、等腰三角形的判定与性质以及折叠的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想的应用.23.(8分)(2014年宁夏)在等边△ABC中,以BC为直径的⊙O与AB交于点D,DE⊥AC,垂足为点E.(1)求证:DE为⊙O的切线;(2)计算.【考点】切线的判定;等边三角形的性质.【分析】(1)连接OD,根据等边三角形性质得出∠B=∠A=60°,求出等边三角形BDO,求出∠BDO∠A,推出OD∥AC,推出OD⊥DE,根据切线的判定推出即可;(2)求出AD=AC,求出AE=AC,CE=AC,即可求出答案.【解答】(1)证明:连接OD,∵△ABC为等边三角形,∴∠ABC=60°,又∵OD=OB,∴△OBD为等边三角形,∴∠BOD=60°=∠ACB,∴OD∥AC,又∵DE⊥AC,∴∠ODE=∠AED=90°,∴DE为⊙O的切线;(2)解:连接CD,∵BC为⊙O的直径,∴∠BDC=90°,又∵△ABC为等边三角形,∴AD=BD=AB,在Rt△AED中,∠A=60°,∴∠ADE=30°,∴AE=AD=AC,CE=AC﹣AE=AC,∴=3.【点评】本题考查了等边三角形的性质和判定,平行线的判定,切线的判定的应用,主要考查学生运用定理进行推理的能力.24.(8分)(2014年宁夏)在平面直角坐标系中,已知反比例函数y=的图象经过点A(1,).(1)试确定此反比例函数的解析式;(2)点O是坐标原点,将线段OA绕O点顺时针旋转30°得到线段OB,判断点B是否在此反比例函数的图象上,并说明理由.【考点】反比例函数图象上点的坐标特征;待定系数法求反比例函数解析式;勾股定理;坐标与图形变化-旋转.【分析】(1)根据反比例函数图象上点的坐标特征计算k的值;(2)过点A作x轴的垂线交x轴于点C,过点B作x轴的垂线交x轴于点D,在Rt△AOC中,根据勾股定理计算出OA=2,利用含30度的直角三角形三边的关系得到∠OAC=30°,则∠AOC=60°,再根据旋转的性质得∠AOB=30°,OB=OA=2,所以∠BOD=30°,在Rt△BOD中,计算出BD=OB=1,OD=BD=,于是得到B点坐标为(,1),然后根据反比例函数图象上点的坐标特征判断B点在反比例函数图象上.【解答】解:(1)把A(1,)代入y=,得k=1×=,∴反比例函数的解析式为y=;(2)点B在此反比例函数的图象上.理由如下:过点A作x轴的垂线交x轴于点C,过点B作x轴的垂线交x轴于点D,如图,在Rt△AOC中,OC=1,AC=,OA==2,∴∠OAC=30°,∴∠AOC=60°,∵线段OA绕O点顺时针旋转30°得到线段OB,∴∠AOB=30°,OB=OA=2,∴∠BOD=30°,在Rt△BOD中,BD=OB=1,OD=BD=,∴B点坐标为(,1),∵当x=时,y==1,∴点B(,1)在反比例函数的图象上.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了旋转的性质和勾股定理.25.(10分)(2014年宁夏)某花店计划下个月每天购进80只玫瑰花进行销售,若下个月按30天计算,每售出1只玫瑰花获利润5元,未售出的玫瑰花每只亏损3元.以x(0<x≤80)表示下个月内每天售出的只数,y(单位:元)表示下个月每天销售玫瑰花的利润.根据历史资料,得到同期下个月内市场销售量的频率分布直方图(每个组距包含左边的数,但不包含右边的数)如图所示:(1)求y关于x的函数关系式;(2)根据频率分布直方图,计算下个月内销售利润少于320元的天数;(3)根据历史资料,在70≤x<80这个组内的销售情况如下表:销售量/只707274757779天数123432计算该组内平均每天销售玫瑰花的只数.【考点】频数(率)分布直方图;函数关系式;加权平均数.【专题】图表型.【分析】(1)根据利润等于售出的玫瑰花的利润与未售出的玫瑰花亏损的钱数之和列式整理即可得解;(2)列不等式求出利润小于320元时卖出的玫瑰花的只数,然后根据频率求解即可;(3)利用加权平均数的计算方法列式计算即可得解.【解答】解:(1)y=5x﹣(80﹣x)×3=8x﹣240(0<x≤80);(2)根据题意,得8x﹣240<320,解得,x<70,表明玫瑰花的售出量小于70只时的利润小于320元,则50≤x<60的天数为:0.1×30=3(天),60≤x<70的天数为:0.2×30=6(天),∴利润少于320元的天数为3+6=9(天);(3)该组内平均每天销售玫瑰:75+=75(只).【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.26.(10分)(2014年宁夏)在Rt△ABC中,∠C=90°,P是BC边上不同于B、C的一动点,过P作PQ⊥AB,垂足为Q,连接AP.(1)试说明不论点P在BC边上何处时,都有△PBQ与△ABC相似;(2)若AC=3,BC=4,当BP为何值时,△AQP面积最大,并求出最大值;(3)在Rt△ABC中,两条直角边BC、AC满足关系式BC=λAC,是否存在一个λ的值,使Rt△AQP既与Rt△ACP全等,也与Rt△BQP全等.【考点】相似形综合题.【分析】(1)利用“两角法”可以证得△PBQ与△ABC相似;(2)设BP=x(0<x<4).由勾股定理、(1)中相似三角形的对应边成比例以及三角形的面积公式列出S与x的函数关系式,利用配方法求得二次函数的最值;(3)利用全等三角形的对应边相等得到AQ=AC,AQ=QB,即AQ=QB=AC.在Rt△ABC中,由勾股定理得BC2=AB2﹣AC2,易求得:BC=AC,则λ=.【解答】解:(1)不论点P在BC边上何处时,都有∠PQB=∠C=90°,∠B=∠B∴△PBQ∽△ABC;(2)设BP=x(0<x<4),由勾股定理,得AB=5∵由(1)知,△PBQ∽△ABC,∴,即∴S△APQ===∴当时,△APQ的面积最大,最大值是;(3)存在.∵Rt△AQP≌Rt△ACP∴AQ=AC又Rt△AQP≌Rt△BQP∴AQ=QB∴AQ=QB=AC在Rt△ABC中,由勾股定理得BC2=AB2﹣AC2∴BC=AC∴λ=时,Rt△AQP既与Rt△ACP全等,也与Rt△BQP全等.【点评】本题综合考查了相似三角形的判定与性质,全等三角形的性质,三角形的面积公式以及二次函数的最值的求法等知识点.难度较大.注意,在证明三角形相似时,充分利用公共角,在利用全等三角形的性质时,要找准对应边.
2015年宁夏中考数学试卷一、选择题(下列每小题所给的四个答案中只有一个是正确的,每小题3分,共24分)1.(3分)(2015•宁夏)下列计算正确的是()A.B.=2C.()﹣1=D.(﹣1)2=22.(3分)(2015•宁夏)生物学家发现了一种病毒的长度约为0.00000432毫米.数据0.00000432用科学记数法表示为()A.0.432×10﹣5B.4.32×10﹣6C.4.32×10﹣7D.43.2×10﹣73.(3分)(2015•宁夏)如图,放置的一个机器零件(图1),若其主视图如(图2)所示,则其俯视图为()A.B.C.D.4.(3分)(2015•宁夏)某校10名学生参加“心理健康”知识测试,他们得分情况如下表:人数2341分数80859095那么这10名学生所得分数的众数和中位数分别是()A.95和85B.90和85C.90和87.5D.85和87.55.(3分)(2015•宁夏)关于x的一元二次方程x2+x+m=0有实数根,则m的取值范围是()A.m≥B.m≤C.m≥D.m≤6.(3分)(2015•宁夏)如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是()A.88°B.92°C.106°D.136°7.(3分)(2015•宁夏)如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道.若设人行道的宽度为x米,则可以列出关于x的方程是()A.x2+9x﹣8=0B.x2﹣9x﹣8=0C.x2﹣9x+8=0D.2x2﹣9x+8=08.(3分)(2015•宁夏)函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.二、填空题(每小题3分,共24分)9.(3分)(2015•宁夏)因式分解:x3﹣xy2=.10.(3分)(2015•宁夏)从2,3,4这三个数字中,任意抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是.11.(3分)(2015•宁夏)如图,将正六边形ABCDEF放在直角坐标系中,中心与坐标原点重合,若A点的坐标为(﹣1,0),则点C的坐标为.12.(3分)(2015•宁夏)已知扇形的圆心角为120°,所对的弧长为,则此扇形的面积是.13.(3分)(2015•宁夏)如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC.若AB=2,∠BCD=30°,则⊙O的半径为.14.(3分)(2015•宁夏)如图,在平面直角坐标系中,点A的坐标为(0,4),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点A′是直线y=x上一点,则点B与其对应点B′间的距离为.15.(3分)(2015•宁夏)如图,在矩形ABCD中,AB=3,BC=5,在CD上任取一点E,连接BE,将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,则CE的长为.16.(3分)(2015•宁夏)如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为.三、解答题(每题6分,共36分)17.(6分)(2015•宁夏)解方程:=1.18.(6分)(2015•宁夏)解不等式组.19.(6分)(2015•宁夏)为了解中考体育科目训练情况,某地从九年级学生中随机抽取了部分学生进行了一次考前体育科目测试,把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格,并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)请将两幅不完整的统计图补充完整;(2)如果该地参加中考的学生将有4500名,根据测试情况请你估计不及格的人数有多少?(3)从被抽测的学生中任选一名学生,则这名学生成绩是D级的概率是多少?20.(6分)(2015•宁夏)在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,﹣4),B(3,﹣2),C(6,﹣3).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以M点为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2:1.21.(6分)(2015•宁夏)在平行四边形ABCD中,E为BC边上的一点.连结AE.(1)若AB=AE,求证:∠DAE=∠D;(2)若点E为BC的中点,连接BD,交AE于F,求EF:FA的值.22.(6分)(2015•宁夏)某校在开展“校园献爱心”活动中,准备向南部山区学校捐赠男、女两种款式的书包.已知男款书包的单价50元/个,女款书包的单价70元/个.(1)原计划募捐3400元,购买两种款式的书包共60个,那么这两种款式的书包各买多少个?(2)在捐款活动中,由于学生捐款的积极性高涨,实际共捐款4800元,如果至少购买两种款式的书包共80个,那么女款书包最多能买多少个?四、解答题(23题、24题每题8分,25题、26题每题10分,共36分)23.(8分)(2015•宁夏)如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.(1)求证:PB是⊙O的切线;(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为2,求BC的长.24.(8分)(2015•宁夏)已知点A(,3)在抛物线y=﹣x的图象上,设点A关于抛物线对称轴对称的点为B.(1)求点B的坐标;(2)求∠AOB度数.25.(10分)(2015•宁夏)某工厂为了对新研发的一种产品进行合理定价,将该产品按拟定的价格进行试销,通过对5天的试销情况进行统计,得到如下数据:单价(元/件)3034384042销量(件)4032242016(1)计算这5天销售额的平均数(销售额=单价×销量);(2)通过对上面表格中的数据进行分析,发现销量y(件)与单价x(元/件)之间存在一次函数关系,求y关于x的函数关系式(不需要写出函数自变量的取值范围);(3)预计在今后的销售中,销量与单价仍然存在(2)中的关系,且该产品的成本是20元/件.为使工厂获得最大利润,该产品的单价应定为多少?26.(10分)(2015•宁夏)如图,是一副学生用的三角板,在△ABC中,∠C=90°,∠A=60°,∠B=30°;在△A1B1C1中,∠C1=90°,∠A1=45°,∠B1=45°,且A1B1=CB.若将边A1C1与边CA重合,其中点A1与点C重合.将三角板A1B1C1绕点C(A1)按逆时针方向旋转,旋转过的角为α,旋转过程中边A1C1与边AB的交点为M,设AC=a.(1)计算A1C1的长;(2)当α=30°时,证明:B1C1∥AB;(3)若a=,当α=45°时,计算两个三角板重叠部分图形的面积;(4)当α=60°时,用含a的代数式表示两个三角板重叠部分图形的面积.(参考数据:sin15°=,cos15°=,tan15°=2﹣,sin75°=,cos75°=,tan75°=2+)
2015年宁夏中考数学试卷参考答案与试题解析一、选择题(下列每小题所给的四个答案中只有一个是正确的,每小题3分,共24分)1.(3分)(2015•宁夏)下列计算正确的是()A.B.=2C.()﹣1=D.(﹣1)2=2考点:二次根式的混合运算;负整数指数幂.菁优网版权所有专题:计算题.分析:根据二次根式的加减法对A进行判断;根据二次根式的除法法则对B进行判断;根据负整数整数幂对B进行判断;根据完全平方公式对D进行判断.解答:解:与不能合并,所以A选项错误;B、原式==2,所以B选项正确;C、原式==,所以C选项正确;D、原式=3﹣2+1=4﹣2,所以D选项正确.故选B.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了负整数整数幂.2.(3分)(2015•宁夏)生物学家发现了一种病毒的长度约为0.00000432毫米.数据0.00000432用科学记数法表示为()A.0.432×10﹣5B.4.32×10﹣6C.4.32×10﹣7D.43.2×10﹣7考点:科学记数法—表示较小的数.菁优网版权所有分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.00000432=4.32×10﹣6,故选:B.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(3分)(2015•宁夏)如图,放置的一个机器零件(图1),若其主视图如(图2)所示,则其俯视图为()A.B.C.D.考点:简单组合体的三视图.菁优网版权所有分析:俯视图是从上面看所得到的图形,此几何体从上面看可以看到一个长方形,中间有一个长方形.解答:解:其俯视图为.故选:D.点评:此题主要考查了画三视图,关键是掌握俯视图所看的位置,注意要把所看到的棱都要用实线画出来.4.(3分)(2015•宁夏)某校10名学生参加“心理健康”知识测试,他们得分情况如下表:人数2341分数80859095那么这10名学生所得分数的众数和中位数分别是()A.95和85B.90和85C.90和87.5D.85和87.5考点:众数;中位数.菁优网版权所有分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,可得答案.解答:解:在这一组数据中9是出现次数最多的,故众数是90;排序后处于中间位置的那个数是85,90,那么由中位数的定义可知,这组数据的中位数是=87.5;故选:C.点评:本题为统计题,考查极差、众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.5.(3分)(2015•宁夏)关于x的一元二次方程x2+x+m=0有实数根,则m的取值范围是()A.m≥B.m≤C.m≥D.m≤考点:根的判别式.菁优网版权所有分析:方程有实数根,则△≥0,建立关于m的不等式,求出m的取值范围.解答:解:由题意知,△=1﹣4m≥0,∴m≤,故选D.点评:本题考查了根的判别式,总结:1、一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.(3分)(2015•宁夏)如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是()A.88°B.92°C.106°D.136°考点:圆内接四边形的性质;圆周角定理.菁优网版权所有分析:首先根据∠BOD=88°,应用圆周角定理,求出∠BAD的度数多少;然后根据圆内接四边形的性质,可得∠BAD+∠BCD=180°,据此求出∠BCD的度数是多少即可.解答:解:∵∠BOD=88°,∴∠BAD=88°÷2=44°,∵∠BAD+∠BCD=180°,∴∠BCD=180°﹣44°=136°,即∠BCD的度数是136°.故选:D.点评:(1)此题主要考查了圆内接四边形的性质和应用,要熟练掌握,解答此题的关键是要明确:①圆内接四边形的对角互补.②圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).(2)此题还考查了圆周角定理的应用,要熟练掌握,解答此题的关键是要明确:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7.(3分)(2015•宁夏)如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道.若设人行道的宽度为x米,则可以列出关于x的方程是()A.x2+9x﹣8=0B.x2﹣9x﹣8=0C.x2﹣9x+8=0D.2x2﹣9x+8=0考点:由实际问题抽象出一元二次方程.菁优网版权所有专题:几何图形问题.分析:设人行道的宽度为x米,根据矩形绿地的面积之和为60米2,列出一元二次方程.解答:解:设人行道的宽度为x米,根据题意得,(18﹣3x)(6﹣2x)=60,化简整理得,x2﹣9x+8=0.故选C.点评:本题考查了由实际问题抽象出一元二次方程,利用两块相同的矩形绿地面积之和为60米2得出等式是解题关键.8.(3分)(2015•宁夏)函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.考点:二次函数的图象;反比例函数的图象.菁优网版权所有专题:压轴题;数形结合.分析:本题可先由反比例函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致.解答:解:由解析式y=﹣kx2+k可得:抛物线对称轴x=0;A、由双曲线的两支分别位于二、四象限,可得k<0,则﹣k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,故A错误;B、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,故B正确;C、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故C错误;D、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故D错误.故选:B.点评:本题主要考查了二次函数及反比例函数和图象,解决此类问题步骤一般为:(1)先根据图象的特点判断k取值是否矛盾;(2)根据二次函数图象判断抛物线与y轴的交点是否符合要求.二、填空题(每小题3分,共24分)9.(3分)(2015•宁夏)因式分解:x3﹣xy2=x(x﹣y)(x+y).考点:提公因式法与公式法的综合运用.菁优网版权所有分析:先提取公因式x,再对余下的多项式利用平方差公式继续分解.解答:解:x3﹣xy2=x(x2﹣y2)=x(x﹣y)(x+y).故答案为:x(x﹣y)(x+y).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.10.(3分)(2015•宁夏)从2,3,4这三个数字中,任意抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是.考点:列表法与树状图法.菁优网版权所有分析:根据所抽取的数据拼成两位数,得出总数及能被3整除的数,求概率.解答:解:如下表,任意抽取两个不同数字组成一个两位数,共6种情况,其中能被3整除的有24,42两种,∴组成两位数能被3整除的概率为==.故答案为:.点评:本题考查了求概率的方法:列表法和树状图法.关键是通过画表格(图)求出组成两位数的所有可能情况及符合条件的几种可能情况.11.(3分)(2015•宁夏)如图,将正六边形ABCDEF放在直角坐标系中,中心与坐标原点重合,若A点的坐标为(﹣1,0),则点C的坐标为(,﹣).考点:正多边形和圆;坐标与图形性质.菁优网版权所有专题:计算题.分析:先连接OE,由于正六边形是轴对称图形,并设EF交Y轴于G,那么∠GOE=30°;在Rt△GOE中,则GE=,OG=.即可求得E的坐标,和E关于Y轴对称的F点的坐标,其他坐标类似可求出.解答:解:连接OE,由正六边形是轴对称图形知:在Rt△OEG中,∠GOE=30°,OE=1.∴GE=,OG=.∴A(﹣1,0),B(﹣,﹣),C(,﹣)D(1,0),E(,),F(﹣,).故答案为:(,﹣)点评:本题利用了正六边形的对称性,直角三角形30°的角所对的边等于斜边的一半,勾股定理等知识.12.(3分)(2015•宁夏)已知扇形的圆心角为120°,所对的弧长为,则此扇形的面积是.考点:扇形面积的计算;弧长的计算.菁优网版权所有专题:计算题.分析:利用弧长公式列出关系式,把圆心角与弧长代入求出扇形的半径,即可确定出扇形的面积.解答:解:∵扇形的圆心角为120°,所对的弧长为,∴l==,解得:R=4,则扇形面积为Rl=,故答案为:点评:此题考查了扇形面积的计算,以及弧长公式,熟练掌握公式是解本题的关键.13.(3分)(2015•宁夏)如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC.若AB=2,∠BCD=30°,则⊙O的半径为.考点:垂径定理;勾股定理;圆周角定理.菁优网版权所有分析:连接OB,根据垂径定理求出BE,求出∠BOE=60°,解直角三角形求出OB即可.解答:解:连接OB,∵OC=OB,∠BCD=30°,∴∠BCD=∠CBO=30°,∴∠BOE=∠BCD+∠CBO=60°,∵直径CD⊥弦AB,AB=2,∴BE=AB=,∠OEB=90°,∴OB==,即⊙O的半径为,故答案为:.点评:本题考查了垂径定理,等腰三角形的性质,解直角三角形,三角形外角性质的应用,能根据垂径定理求出BE和解直角三角形求出OB长是解此题的关键,难度适中.14.(3分)(2015•宁夏)如图,在平面直角坐标系中,点A的坐标为(0,4),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点A′是直线y=x上一点,则点B与其对应点B′间的距离为5.考点:一次函数图象上点的坐标特征;坐标与图形变化-平移.菁优网版权所有分析:根据平移的性质知BB′=AA′.由一次函数图象上点的坐标特征可以求得点A′的坐标,所以根据两点间的距离公式可以求得线段AA′的长度,即BB′的长度.解答:解:如图,连接AA′、BB′.∵点A的坐标为(0,4),△OAB沿x轴向右平移后得到△O′A′B′,∴点A′的纵坐标是4.又∵点A的对应点在直线y=x上一点,∴4=x,解得x=5.∴点A′的坐标是(5,4),∴AA′=5.∴根据平移的性质知BB′=AA′=5.故答案为:5.点评:本题考查了一次函数图象上点的坐标特征、坐标与图形变化﹣﹣平移.根据平移的性质得到BB′=AA′是解题的关键.15.(3分)(2015•宁夏)如图,在矩形ABCD中,AB=3,BC=5,在CD上任取一点E,连接BE,将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,则CE的长为.考点:翻折变换(折叠问题).菁优网版权所有分析:设CE=x,由矩形的性质得出AD=BC=5,CD=AB=3,∠A=∠D=90°.由折叠的性质得出BF=BC=5,EF=CE=x,DE=CD﹣CE=3﹣x.在Rt△ABF中利用勾股定理求出AF的长度,进而求出DF的长度;然后在Rt△DEF根据勾股定理列出关于x的方程即可解决问题.解答:解:设CE=x.∵四边形ABCD是矩形,∴AD=BC=5,CD=AB=3,∠A=∠D=90°.∵将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,∴BF=BC=5,EF=CE=x,DE=CD﹣CE=3﹣x.在Rt△ABF中,由勾股定理得:AF2=52﹣32=16,∴AF=4,DF=5﹣4=1.在Rt△DEF中,由勾股定理得:EF2=DE2+DF2,即x2=(3﹣x)2+12,解得:x=,故答案为.点评:本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理、矩形的性质、方程思想等知识,关键是熟练掌握勾股定理,找准对应边.16.(3分)(2015•宁夏)如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为2km.考点:解直角三角形的应用-方向角问题.菁优网版权所有分析:过点A作AD⊥OB于D.先解Rt△AOD,得出AD=OA=2km,再由△ABD是等腰直角三角形,得出BD=AD=2km,则AB=AD=2km.解答:解:如图,过点A作AD⊥OB于D.在Rt△AOD中,∵∠ADO=90°,∠AOD=30°,OA=4km,∴AD=OA=2km.在Rt△ABD中,∵∠ADB=90°,∠B=∠CAB﹣∠AOB=75°﹣30°=45°,∴BD=AD=2km,∴AB=AD=2km.即该船航行的距离(即AB的长)为2km.故答案为2km.点评:本题考查了解直角三角形的应用﹣方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.三、解答题(每题6分,共36分)17.(6分)(2015•宁夏)解方程:=1.考点:解分式方程.菁优网版权所有分析:因为x2﹣1=(x+1)(x﹣1),所以可确定最简公分母(x+1)(x﹣1),然后方程两边同乘最简公分母将分式方程转化为整式方程求解即可,注意检验.解答:解:方程两边同乘(x+1)(x﹣1),得x(x+1)﹣(2x﹣1)=(x+1)(x﹣1),解得x=1.经检验x=1是增根,原方程无解.点评:本题考查了解分式方程,解分式方程要注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.(3)去分母时要注意符号的变化.18.(6分)(2015•宁夏)解不等式组.考点:解一元一次不等式组.菁优网版权所有分析:先解不等式组中每一个不等式的解集,再利用求不等式组解集的口诀“大小小大中间找”即可确定结果.解答:解:由①得:x≥2,由②得:x<4,所以这个不等式组的解集为:2≤x<4.点评:本题主要考查了一元一次不等式组解集的求法,其简便方法就是利用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小解不了(无解集).19.(6分)(2015•宁夏)为了解中考体育科目训练情况,某地从九年级学生中随机抽取了部分学生进行了一次考前体育科目测试,把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格,并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)请将两幅不完整的统计图补充完整;(2)如果该地参加中考的学生将有4500名,根据测试情况请你估计不及格的人数有多少?(3)从被抽测的学生中任选一名学生,则这名学生成绩是D级的概率是多少?考点:条形统计图;用样本估计总体;扇形统计图;概率公式.菁优网版权所有分析:(1)首先根据题意求得总人数,继而求得A级与D级占的百分比,求得C级与D级的人数;则可补全统计图;(2)根据题意可得:估计不及格的人数有:4500×20%=900(人);(3)由概率公式的定义,即可求得这名学生成绩是D级的概率.解答:解:(1)总人数为:12÷30%=40(人),A级占:×100%=15%,D级占:1﹣35%﹣30%﹣15%=20%;C级人数:40×35%=14(人),D级人数:40×20%=8(人),补全统计图得:(2)估计不及格的人数有:4500×20%=900(人);(3)从被抽测的学生中任选一名学生,则这名学生成绩是D级的概率是:20%.点评:此题考查了概率公式的应用以及扇形统计图与条形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.20.(6分)(2015•宁夏)在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,﹣4),B(3,﹣2),C(6,﹣3).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以M点为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2:1.考点:作图-位似变换;作图-轴对称变换.菁优网版权所有分析:(1)利用轴对称图形的性质进而得出对应点位置进而画出图形即可;(2)利用位似图形的性质得出对应点位置进而画出图形即可.解答:解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求.点评:此题主要考查了轴对称变换以及位似变换,根据题意得出对应点位置是解题关键.21.(6分)(2015•宁夏)在平行四边形ABCD中,E为BC边上的一点.连结AE.(1)若AB=AE,求证:∠DAE=∠D;(2)若点E为BC的中点,连接BD,交AE于F,求EF:FA的值.考点:相似三角形的判定与性质;平行四边形的性质.菁优网版权所有分析:(1)根据平行四边形的对边互相平行可得AD∥BC,再根据两直线平行,内错角相等可得∠AEB=∠EAD,根据等边对等角可得∠ABE=∠AEB,即可得证;(2)由四边形ABCD是平行四边形,可证得△BEF∽△AFD,即可求得EF:FA的值.解答:证明:(1)在平行四边形ABCD中,AD∥BC,∴∠AEB=∠EAD,∵AE=AB,∴∠ABE=∠AEB,∴∠B=∠EAD,∵∠B=∠D,∴∠DAE=∠D;(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△BEF∽△AFD,∴,∵E为BC的中点,∴BE=BC=AD,∴EF:FA=1:2.点评:此题考查了相似三角形的判定与性质与平行四边形的性质.熟练掌握平行四边形的性质是解题的关键.22.(6分)(2015•宁夏)某校在开展“校园献爱心”活动中,准备向南部山区学校捐赠男、女两种款式的书包.已知男款书包的单价50元/个,女款书包的单价70元/个.(1)原计划募捐3400元,购买两种款式的书包共60个,那么这两种款式的书包各买多少个?(2)在捐款活动中,由于学生捐款的积极性高涨,实际共捐款4800元,如果至少购买两种款式的书包共80个,那么女款书包最多能买多少个?考点:一元一次不等式的应用;二元一次方程组的应用.菁优网版权所有分析:(1)设原计划买男款书包x个,则女款书包(60﹣x)个,根据题意得:50x+70(60﹣x)=3400,即可解答;(2)设女款书包最多能买y个,则男款书包(80﹣y)个,根据题意得:70y+50(80﹣y)≤4800,即可解答.解答:解:(1)设原计划买男款书包x个,则女款书包(60﹣x)个,根据题意得:50x+70(60﹣x)=3400,解得:x=40,60﹣x=60﹣40=20,答:原计划买男款书包40个,则女款书包20个.(2)设女款书包最多能买y个,则男款书包(80﹣y)个,根据题意得:70y+50(80﹣y)≤4800,解得:y≤40,∴女款书包最多能买40个.点评:本题考查了一元一次方程、一元一次不等式的应用,解决本题的关键是根据题意列出方程和不等式.四、解答题(23题、24题每题8分,25题、26题每题10分,共36分)23.(8分)(2015•宁夏)如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.(1)求证:PB是⊙O的切线;(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为2,求BC的长.考点:切线的判定.菁优网版权所有分析:连接OB,由圆周角定理得出∠ABC=90°,得出∠C+∠BAC=90°,再由OA=OB,得出∠BAC=∠OBA,证出∠PBA+∠OBA=90°,即可得出结论;(2)证明△ABC∽△PBO,得出对应边成比例,即可求出BC的长.解答:(1)证明:连接OB,如图所示:∵AC是⊙O的直径,∴∠ABC=90°,∴∠C+∠BAC=90°,∵OA=OB,∴∠BAC=∠OBA,∵∠PBA=∠C,∴∠PBA+∠OBA=90°,即PB⊥OB,∴PB是⊙O的切线;(2)解:∵⊙O的半径为2,∴OB=2,AC=4,∵OP∥BC,∴∠C=∠BOP,又∵∠ABC=∠PBO=90°,∴△ABC∽△PBO,∴,即,∴BC=8.点评:本题考查了切线的判定、圆周角定理、平行线的性质、相似三角形的判定与性质;熟练掌握圆周角定理、切线的判定是解决问题的关键.24.(8分)(2015•宁夏)已知点A(,3)在抛物线y=﹣x的图象上,设点A关于抛物线对称轴对称的点为B.(1)求点B的坐标;(2)求∠AOB度数.考点:二次函数图象上点的坐标特征;二次函数的性质.菁优网版权所有分析:(1)首先求得抛物线的对称轴,然后确定点A关于对称轴的交点坐标即可;(2)根据确定的两点的坐标确定∠AOC和∠BOC的度数,从而确定∠AOB的度数.解答:解:(1)∵y=﹣x=﹣(x﹣2)2+4,∴对称轴为x=2,∴点A(,3)关于x=2的对称点的坐标为(3,3);(2)如图:∵A(,3)、(3,3),∴BC=3,AC=,OC=3,∴tan∠AOC==,tan∠BOC===,∴∠AOC=30°,∠BOC=60°,∴∠AOB=30°.点评:本题考查了二次函数图象上的点的坐标及二次函数的性质,能够确定抛物线的对称轴是解答本题的关键,难度不大.25.(10分)(2015•宁夏)某工厂为了对新研发的一种产品进行合理定价,将该产品按拟定的价格进行试销,通过对5天的试销情况进行统计,得到如下数据:单价(元/件)3034384042销量(件)4032242016(1)计算这5天销售额的平均数(销售额=单价×销量);(2)通过对上面表格中的数据进行分析,发现销量y(件)与单价x(元/件)之间存在一次函数关系,求y关于x的函数关系式(不需要写出函数自变量的取值范围);(3)预计在今后的销售中,销量与单价仍然存在(2)中的关系,且该产品的成本是20元/件.为使工厂获得最大利润,该产品的单价应定为多少?考点:二次函数的应用.菁优网版权所有专题:应用题.分析:(1)根据题中表格中的数据列出算式,计算即可得到结果;(2)设y=kx+b,从表格中找出两对值代入求出k与b的值,即可确定出解析式;(3)设定价为x元时,工厂获得的利润为W,列出W与x的二次函数解析式,利用二次函数性质求出W最大时x的值即可.解答:解:(1)根据题意得:=934.4(元);(2)根据题意设y=kx+b,把(30,40)与(40,20)代入得:,解得:k=﹣2,b=100,则y=﹣2x+100;(3)设定价为x元时,工厂获得的利润为W,根据题意得:W=(x﹣20)y=(x﹣20)(﹣2x+100)=﹣2x2+140x﹣2000=﹣2(x﹣35)2+450,∵当x=35时,W最大值为450,则为使工厂获得最大利润,该产品的单价应定为35元.点评:此题考查了二次函数的应用,待定系数法确定一次函数解析式,以及二次函数的性质,熟练掌握二次函数性质是解本题的关键.26.(10分)(2015•宁夏)如图,是一副学生用的三角板,在△ABC中,∠C=90°,∠A=60°,∠B=30°;在△A1B1C1中,∠C1=90°,∠A1=45°,∠B1=45°,且A1B1=CB.若将边A1C1与边CA重合,其中点A1与点C重合.将三角板A1B1C1绕点C(A1)按逆时针方向旋转,旋转过的角为α,旋转过程中边A1C1与边AB的交点为M,设AC=a.(1)计算A1C1的长;(2)当α=30°时,证明:B1C1∥AB;(3)若a=,当α=45°时,计算两个三角板重叠部分图形的面积;(4)当α=60°时,用含a的代数式表示两个三角板重叠部分图形的面积.(参考数据:sin15°=,cos15°=,tan15°=2﹣,sin75°=,cos75°=,tan75°=2+)考点:几何变换综合题.菁优网版权所有专题:创新题型.分析:(1)在Rt△ABC中,由特殊锐角三角函数值,先求得BC的长,然后在Rt△A1B1C1中利用特殊锐角三角函数即可求得A1C1的长;(2)利用三角形的外角的性质求得∠BMC=90°,然后利用同位角相等,两直线平行进行判定即可;(3)两个三角板重叠部分图形的面积=△A1B1C1的面积﹣△BC1M的面积;(4)两个三角板重叠部分图形的面积=△CC1B1的面积﹣三角形FB1C的面积﹣三角形DC1M的面积.解答:解:(1)在Rt△ABC中,∠B=30°,AC=a,由特殊锐角三角函数可知:,∴BC=.∴B1C=在Rt△A1B1C1,∠B1=∠45°,∴.∴A1C1==.(2)∵∠ACM=30°,∠A=60°,∴∠BMC=90°.∴∠C1=∠BMC.∴B1C1∥AB.(3)如下图:由(1)可知:A1C1===3+∴△A1B1C1的面积==∵∠A1B1C1=45°,∠ABC=30°∴∠MBC1=15°在Rt△BC1M中,C1M=BCtan15°=(3+)(2﹣)=3﹣,∴Rt△BC1M的面积===3.∴两个三角板重叠部分图形的面积=△A1B1C1的面积﹣△BC1M的面积=3+3.(4)如下图:过点B1作B1E⊥BC,垂足为E.由(1)可知:BC=,A1C1=,∵∠MCA=60°,∠A=60°,∴∠AMC=60°∴MC=AC=MA=a.∴C1M=C1A1﹣MC=.∵∠MCA=60°,∴∠C1A1B=30°,∴∠C1MD=∠B+∠C1A1B=60°在Rt△DC1M中,由特殊锐角三角函数可知:DC1=C1M•tan60°=a,∴三角形DC1M的面积=C1M•DC1=a2,在Rt△BB1C中,C1B=BC=,∠BCB1=15°,由特殊锐角三角函数可知:B1E=C1B•sin15°=,在Rt△FC1C中,C1C=,∠CC1F=30°,由特殊锐角三角函数可知:CF=CC1÷=.∴三角形FB1C的面积==.两个三角板重叠部分图形的面积=△A1C1B1的面积﹣三角形FB1C的面积﹣三角形DC1M的面积=.点评:本题主要考查的是锐角三角函数和三角形的综合应用,难度较大,解答本题的关键是灵活应用锐角函数求得相关线段的长度.
2016年宁夏中考数学试卷一、选择题(每小题3分,共24分)1.(3分)某地一天的最高气温是8℃,最低气温是﹣2℃,则该地这天的温差是()A.10℃ B.﹣10℃ C.6℃ D.﹣6℃2.(3分)下列计算正确的是()A.+= B.(﹣a2)2=﹣a4 C.(a﹣2)2=a2﹣4 D.÷=(a≥0,b>0)3.(3分)已知x,y满足方程组,则x+y的值为()A.9 B.7 C.5 D.34.(3分)为响应“书香校响园”建设的号召,在全校形成良好的阅读氛围,随机调查了部分学生平均每天阅读时间,统计结果如图所示,则本次调查中阅读时间为的众数和中位数分别是()A.2和1 B.1.25和1 C.1和1 D.1和1.255.(3分)菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF.若EF=,BD=2,则菱形ABCD的面积为()A.2 B. C.6 D.86.(3分)由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方形个数是()A.3 B.4 C.5 D.67.(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO 15708-2:2025 EN Non-destructive testing - Radiation methods for computed tomography - Part 2: Principles,equipment and samples
- 贵州财经职业学院《电路实验A》2023-2024学年第一学期期末试卷
- 贵阳幼儿师范高等专科学校《强化传热》2023-2024学年第一学期期末试卷
- 2025海南建筑安全员考试题库附答案
- 2025年海南建筑安全员知识题库
- 2025年山西省安全员B证考试题库附答案
- 广州幼儿师范高等专科学校《数字逻辑与计算机组成原理》2023-2024学年第一学期期末试卷
- 广州卫生职业技术学院《作物栽培学》2023-2024学年第一学期期末试卷
- 2025年贵州省建筑安全员知识题库附答案
- 2025青海建筑安全员考试题库附答案
- 血透管的固定和护理
- 寒假弯道超车主题励志班会课件
- 触电与应急知识培训总结
- 分布式光伏高处作业专项施工方案
- 代理记账机构自查报告范文
- 项目贷款保证函书
- 新版标准日本语(初级)上下册单词默写表
- 面向5G网络建设的站点供电技术应用与发展
- 普通语文课程标准(2023年核心素养版)
- 洗涤剂常用原料
- 曼陀罗中毒课件
评论
0/150
提交评论