2024届北京市石景山第九中学数学高二第二学期期末统考模拟试题含解析_第1页
2024届北京市石景山第九中学数学高二第二学期期末统考模拟试题含解析_第2页
2024届北京市石景山第九中学数学高二第二学期期末统考模拟试题含解析_第3页
2024届北京市石景山第九中学数学高二第二学期期末统考模拟试题含解析_第4页
2024届北京市石景山第九中学数学高二第二学期期末统考模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届北京市石景山第九中学数学高二第二学期期末统考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设三次函数的导函数为,函数的图象的一部分如图所示,则正确的是()A.的极大值为,极小值为B.的极大值为,极小值为C.的极大值为,极小值为D.的极大值为,极小值为2.某一数学问题可用综合法和分析法两种方法证明,有5位同学只会用综合法证明,有3位同学只会用分析法证明,现任选1名同学证明这个问题,不同的选法种数有()种.A.8 B.15 C.18 D.303.已知函数图象相邻两条对称轴之间的距离为,将函数的图象向左平移个单位,得到的图象关于轴对称,则()A.函数的周期为 B.函数图象关于点对称C.函数图象关于直线对称 D.函数在上单调4.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶,甲车、乙车的速度曲线分别为和(如图所示),那么对于图中给定的和,下列判断中一定正确的是()A.在时刻,两车的位置相同B.时刻后,甲车在乙车后面C.在时刻,两车的位置相同D.在时刻,甲车在乙车前面5.我国古代数学名著九章算术中有这样一些数学用语,“堑堵”意指底面为直角三角形,且侧棱垂直于底面的三棱柱,而“阳马”指底面为矩形且有一侧棱垂直于底面的四棱锥现有一如图所示的堑堵,,,当堑堵的外接球的体积为时,则阳马体积的最大值为A.2 B.4 C. D.6.计算:()A. B. C. D.7.已知,且,则向量在方向上的投影为()A. B. C. D.8.名同学合影,站成了前排人,后排人,现摄影师要从后排人中抽人站前排,其他人的相对顺序不变,则不同的调整方法的种数为()A. B. C. D.9.已知,则“”是“”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分又非必要条件10.已知为两条不同的直线,为两个不同的平面,则下列四个命题中正确的是①若则;②若则;③若,则;④若则A.①②④ B.②③ C.①④ D.②④11.设函数的定义域为R,满足,且当时.则当,的最小值是()A. B. C. D.12.若,,满足,,.则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.定积分的值等于________.14.椭圆的焦点为、,为椭圆上的一点,,则__________.15.若,,则的最小值为__________.16.从包括甲乙两人的6名学生中选出3人作为代表,记事件:甲被选为代表,事件:乙没有被选为代表,则等于_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)(1)设集合},,且,求实数m的值.(2)设,是两个复数,已知,,且·是实数,求.18.(12分)设为数列的前项和,且,,.(Ⅰ)证明:数列为等比数列;(Ⅱ)求.19.(12分)中国已经成为全球最大的电商市场,但是实体店仍然是消费者接触商品和品牌的重要渠道.某机构随机抽取了年龄介于10岁到60岁的消费者200人,对他们的主要购物方式进行问卷调查.现对调查对象的年龄分布及主要购物方式进行统计,得到如下图表:主要购物方式年龄阶段网络平台购物实体店购物总计40岁以下7540岁或40岁以上55总计(1)根据已知条件完成上述列联表,并据此资料,能否在犯错误的概率不超过的前提下,认为消费者主要的购物方式与年龄有关?(2)用分层抽样的方法从通过网络平台购物的消费者中随机抽取8人,然后再从这8名消费者中抽取5名进行答谢.设抽到的消费者中40岁以下的人数为,求的分布列和数学期望.参考公式:,其中.临界值表:20.(12分)如图,点,,,分别为椭圆:的左、右顶点,下顶点和右焦点,直线过点,与椭圆交于点,已知当直线轴时,.(1)求椭圆的离心率;(2)若当点与重合时,点到椭圆的右准线的距离为上.①求椭圆的方程;②求面积的最大值.21.(12分)已知函数,其中.(1)求的单调递增区间;(2)当的图像刚好与轴相切时,设函数,其中,求证:存在极小值且该极小值小于.22.(10分)在直角坐标系中,曲线的参数方程为(为参数,),以原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)写出曲线的普通方程和曲线的直角坐标方程;(2)已知点是曲线上一点,若点到曲线的最小距离为,求的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】

由的图象可以得出在各区间的正负,然后可得在各区间的单调性,进而可得极值.【题目详解】由图象可知:当和时,,则;当时,,则;当时,,则;当时,,则;当时,,则.所以在上单调递减;在上单调递增;在上单调递减.所以的极小值为,极大值为.故选C.【题目点拨】本题考查导数与函数单调性的关系,解题的突破点是由已知函数的图象得出的正负性.2、A【解题分析】

本题是一个分类计数问题,解决问题分成两个种类,根据分类计数原理知共有3+5=8种结果.【题目详解】由题意知本题是一个分类计数问题,解决问题分成两个种类,一是可以用综合法证明,有5种方法,一是可以用分析法来证明,有3种方法,根据分类计数原理知共有3+5=8种结果,故选A.【题目点拨】本题考查分类计数问题,本题解题的关键是看清楚完成这个过程包含两种方法,看出每一种方法所包含的基本事件数,相加得到结果.3、D【解题分析】

根据对称轴之间的距离,求得周期,再根据周期公式求得;再平移后,根据关于y轴对称可求得的值,进而求得解析式。根据解析式判断各选项是否正确。【题目详解】因为函数图象相邻两条对称轴之间的距离为所以周期,则所以函数函数的图象向左平移单位,得到的解析式为因为图象关于y轴对称,所以,即,k∈Z因为所以即所以周期,所以A错误对称中心满足,解得,所以B错误对称轴满足,解得,所以C错误单调增区间满足,解得,而在内,所以D正确所以选D【题目点拨】本题考查了三角函数的综合应用,周期、平移变化及单调区间的求法,属于基础题。4、D【解题分析】

根据图象可知在前,甲车的速度高于乙车的速度;根据路程与速度和时间的关系可得到甲车的路程多于乙车的路程,从而可知甲车在乙车前面.【题目详解】由图象可知,在时刻前,甲车的速度高于乙车的速度由路程可知,甲车走的路程多于乙车走的路程在时刻,甲车在乙车前面本题正确选项:【题目点拨】本题考查函数图象的应用,关键是能够准确选取临界状态,属于基础题.5、D【解题分析】

由已知求出三棱柱外接球的半径,得到,进一步求得AB,再由棱锥体积公式结合基本不等式求最值.【题目详解】解:堑堵的外接球的体积为,其外接球的半径,即,又,.则..即阳马体积的最大值为.故选:D.【题目点拨】本题考查多面体的体积、均值定理等基础知识,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力,是中档题.6、B【解题分析】

直接利用组合数公式求解即可.【题目详解】由组合数公式可得.故选:B.【题目点拨】本题考查组合数公式的应用,是基本知识的考查.7、C【解题分析】

分析:由推导出,从而,由此能求出向量在向量方向上的投影.详解:,且,,,向量在向量方向上的投影为,故选C.点睛:本题主要考查向量的模及平面向量数量积公式,属于中档题.平面向量数量积公式有两种形式,一是,二是,主要应用以下几个方面:(1)求向量的夹角,(此时往往用坐标形式求解);(2)求投影,在上的投影是;(3)向量垂直则;(4)求向量的模(平方后需求).8、C【解题分析】分析:首先从后排的7人中选出2人,有C72种结果,再把两个人在5个位置中选2个位置进行排列有A52,利用乘法原理可得结论.详解:由题意知本题是一个分步计数问题,首先从后排的7人中选出2人,有C72种结果,再把两个人在5个位置中选2个位置进行排列有A52,∴不同的调整方法有C72A52,故选:C点睛:解答排列、组合问题的角度:解答排列、组合应用题要从“分析”、“分辨”、“分类”、“分步”的角度入手;(1)“分析”就是找出题目的条件、结论,哪些是“元素”,哪些是“位置”;(2)“分辨”就是辨别是排列还是组合,对某些元素的位置有、无限制等;(3)“分类”就是将较复杂的应用题中的元素分成互相排斥的几类,然后逐类解决;(4)“分步”就是把问题化成几个互相联系的步骤,而每一步都是简单的排列、组合问题,然后逐步解决.9、A【解题分析】

“a>1”⇒“”,“”⇒“a>1或a<0”,由此能求出结果.【题目详解】a∈R,则“a>1”⇒“”,“”⇒“a>1或a<0”,∴“a>1”是“”的充分非必要条件.故选A.【题目点拨】充分、必要条件的三种判断方法.1.定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.2.等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.10、D【解题分析】

根据选项利用判定定理、性质定理以及定义、举例逐项分析.【题目详解】①当都在平面内时,显然不成立,故错误;②因为,则过的平面与平面的交线必然与平行;又因为,所以垂直于平面内的所有直线,所以交线,又因为交线,则,故正确;③正方体上底面的两条对角线平行于下底面,但是两条对角线不平行,故错误;④因为垂直于同一平面的两条直线互相平行,故正确;故选:D.【题目点拨】本题考查判断立体几何中的符号语言表述的命题的真假,难度一般.处理立体几何中符号语言问题,一般可采用以下方法:(1)根据判定、性质定理分析;(2)根据定义分析;(3)举例说明或者作图说明.11、D【解题分析】

先求出函数在区间上的解析式,利用二次函数的性质可求出函数在区间上的最小值.【题目详解】由题意可知,函数是以为周期的周期函数,设,则,则,即当时,,可知函数在处取得最小值,且最小值为,故选D.【题目点拨】本题考查函数的周期性以及函数的最值,解决本题的关键就是根据周期性求出函数的解析式,并结合二次函数的基本性质求解,考查计算能力,属于中等题.12、A【解题分析】

利用指数函数和对数函数的单调性即可比较大小.【题目详解】,,,,,,,,,故选:A.【题目点拨】本题考查了指数函数和对数函数的单调性,考查了计算能力和推理能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、ln1【解题分析】

直接根据定积分的计算法则计算即可.【题目详解】,故答案为:ln1.【题目点拨】本题考查了定积分的计算,关键是求出原函数,属于基础题.14、8【解题分析】分析:根据椭圆的方程,得到,由知为直角三角形,在中利用勾股定理得|.再根据椭圆的定义得到,两式联解可得,由此即可得到Rt△F1PF2的面积为S=1.详解:∵椭圆方程为,且,可得

∵,∴…①

根据椭圆的定义,得|,

∴…②

②减去①,得,可得

即答案为:8点睛:本题给出椭圆的焦点三角形为直角三角形,求焦点三角形的面积.着重考查了椭圆的标准方程与简单几何性质等知识,属于中档题.15、【解题分析】

由题可得,,再利用基本不等式的性质即可得出结果.【题目详解】因为,所以,当且仅当时取等号,所以的最小值为4.故答案为:4.【题目点拨】本题主要考查利用“整体乘1”的方法和基本不等式的性质来求最值,注意基本不等式的前提是正数.16、【解题分析】因为,所以。应填答案。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)或或(2)或【解题分析】

(1)解方程得到集合,再分别讨论和两种情况,即可得出结果;(2)先设,根据题中条件,得到,,即可求出结果.【题目详解】解:(1)由解得:或∴,又∵∴当时,此时符合题意.当时,则.由得,所以或解得:或综上所述:或或(2)设,∵∴,即①又,且,是实数,∴②由①②得,,或,∴或【题目点拨】本题主要考查由集合间的关系求参数的问题,以及复数的运算,熟记子集的概念,以及复数的运算法则即可,属于常考题型.18、(1)见解析(2)【解题分析】

可通过和来构造数列,得出是等比数列,在带入得出首项的值,以此得出数列解析式。可以先把分成两部分依次求和。【题目详解】(1)因为,所以,即,则,所以,又,故数列是首项为2,公比为2的等比数列.(2)由(1)知,所以,故.设,则,所以,所以,所以。【题目点拨】本题考查构造数列以及数列的错位相减法求和。19、(1)可以在犯错误的概率不超过的前提下,认为消费者主要的购物方式与年龄有关;(2)见解析【解题分析】

(1)先由频率分布直方图得到列联表,再根据公式计算得到卡方值,进而作出判断;(2)消费者中40岁以下的人数为,可能取值为3,4,5,求出相应的概率值,再得到分布列和期望.【题目详解】(1)根据直方图可知40岁以下的消费者共有人,40或40岁以上的消费者有80人,故根据数据完成列联表如下:主要购物方式年龄阶段网络平台购物实体店购物总计40岁以下754512040岁或40岁以上255580总计100100200依题意,的观测值故可以在犯错误的概率不超过的前提下,认为消费者主要的购物方式与年龄有关.(2)从通过网络平台购物的消费者中随机抽取8人,其中40岁以下的有6人,40岁或40岁以上的有2人,从这8名消费者抽取5名进行答谢,设抽到的消费者中40岁以下的人数为,则的可能取值为3,4,5且,,,则的分布列为:345故的数学期望为3.75.【题目点拨】求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是“探求概率”,即利用排列组合、枚举法、概率公式,求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布则此随机变量的期望可直接利用这种典型分布的期望公式求得.20、(1)(2)①②【解题分析】分析:(1)先求当直线轴时,,再根据条件得,最后由解得离心率,(2)设直线为,,,,联立直线方程与椭圆方程,利用韦达定理化简,即得,令,利用基本不等式求最值,最后考虑特殊情形下三角形面积的值.详解:解:(1)在中,令可得,所以所以当直线轴时,又,所以所以,所以(2)①因为,所以,椭圆方程为当点与点重合时,点坐标为又,所以此时直线为由得又,所以所以椭圆方程为②设直线为由得即,恒成立设,则,所以令,则且,易知函数在上单调递增所以当时,即的面积的最大值为点睛:解析几何中的最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值的探求来使问题得以解决

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论