版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省三明市梅列区梅列、永安2023年数学九上期末综合测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.在同一直角坐标系中,函数与y=ax+1(a≠0)的图象可能是()A. B.C. D.2.如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,OA=3,OC=1,分别连结AC、BD,则图中阴影部分的面积为()A. B. C. D.3.代数式有意义的条件是()A. B. C. D.4.二次函数y=ax1+bx+c(a≠0)中的x与y的部分对应值如下表:x…﹣3﹣1﹣101134…y…1150﹣3﹣4﹣305…给出以下结论:(1)二次函数y=ax1+bx+c有最小值,最小值为﹣3;(1)当﹣<x<1时,y<0;(3)已知点A(x1,y1)、B(x1,y1)在函数的图象上,则当﹣1<x1<0,3<x1<4时,y1>y1.上述结论中正确的结论个数为()A.0 B.1 C.1 D.35.如图1,一个扇形纸片的圆心角为90°,半径为1.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A. B. C. D.6.一组数据0、-1、3、2、1的极差是()A.4 B.3 C.2 D.17.在-2,-1,0,1这四个数中,最小的数是()A.-2 B.-1 C.0 D.18.如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的大小为()A.40° B.50° C.80° D.100°9.下列成语描述的事件为随机事件的是()A.水涨船高B.守株待兔C.水中捞月D.缘木求鱼10.如图,有一圆锥形粮堆,其侧面展开图是半径为6m的半圆,粮堆母线AC的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程长为()A.3m B.m C.m D.4m11.某校办工厂生产的某种产品,今年产量为200件,计划通过改革技术,使今后两年的产量都比前一年增长一个相同的百分数,使得三年的总产量达到1400件.若设这个百分数为,则可列方程()A. B.C. D.12.如下图形中既是中心对称图形,又是轴对称图形的是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,在△ABC中,∠BAC=90°,AB=AC=10cm,点D为△ABC内一点,∠BAD=15°,AD=6cm,连接BD,将△ABD绕点A逆时针方向旋转,使AB与AC重合,点D的对应点E,连接DE,DE交AC于点F,则CF的长为________cm.14.如图,中,,则__________.15.在平面直角坐标系中,和是以坐标原点为位似中心的位似图形,且点.若点,则的坐标为__________.16.某校开展“节约每滴水”活动,为了了解开展活动一个月以来节约用水情况,从九年级的400名同学中选取20名同学统计了各自家庭一个月节约用水情况,如下表:节水量()0.20.250.30.4家庭数(个)4637请你估计这400名同学的家庭一个月节约用水的总量大约是_________.17.如图,在边长为的正方形中,点为靠近点的四等分点,点为中点,将沿翻折得到连接则点到所在直线距离为________________.18.方程的根为.三、解答题(共78分)19.(8分)某果品专卖店元旦前后至春节期间主要销售薄壳核桃,采购价为15元/kg,元旦前售价是20元/kg,每天可卖出450kg.市场调查反映:如调整单价,每涨价1元,每天要少卖出50kg;每降价1元,每天可多卖出150kg.(1)若专卖店元旦期间每天获得毛利2400元,可以怎样定价?若调整价格也兼顾顾客利益,应如何确定售价?(2)请你帮店主算一算,春节期间如何确定售价每天获得毛利最大,并求出最大毛利.20.(8分)某商店销售一种销售成本为40元/千克的水产品,若按50元/千克销售,一个月可售出500千克,销售单价每涨价1元,月销售量就减少10千克.(1)①求出月销售量y(千克)与销售单价x(元/千克)之间的函数关系式;②求出月销售利润w(元)与销售单价x(元/千克)之间的函数关系式;(2)在月销售成本不超过10000元的情况下,使月销售利润达到8000元,销售单价应定为多少元?(3)当销售单价定为多少元时,能获得最大利润?最大利润是多少元?21.(8分)阅读下面材料后,解答问题.分母中含有未知数的不等式叫分式不等式.如:,等.那么如何求出它们的解集呢?根据我们学过的有理数除法法则可知,两数相除,同号得正,异号得负,其字母表达式为:(1)若,,则,若,,则;(2)若,,则,若,,则.反之,(1)若,则或(3)若,则__________或_____________.根据上述规律,求不等式,的解集,方法如下:由上述规律可知,不等式,转化为①或②解不等式组①得,解不等式组②得.∴不等式,的解集是或.根据上述材料,解决以下问题:A、求不等式的解集B、乘法法则与除法法则类似,请你类比上述材料内容,运用乘法法则,解决以下问题:求不等式的解集.22.(10分)某商场以每件42元的价格购进一种服装,由试销知,每天的销量t(件)与每件的销售价x(元)之间的函数关系为t=204-3x.(1)试写出每天销售这种服装的毛利润y(元)与每件售价x(元)之间的函数关系式(毛利润=销售价-进货价);(2)每件销售价为多少元,才能使每天的毛利润最大?最大毛利润是多少?23.(10分)已知关于的一元二次方程.(1)求证:对于任意实数,方程总有两个不相等的实数根;(2)若方程的一个根是1,求的值及方程的另一个根.24.(10分)如图,在足够大的空地上有一段长为米的旧墙,某人利用旧墙和木栏围成一个矩形菜园,其中,已知矩形菜园的一边靠墙,另三边一共用了米木栏.(1)若米,所围成的矩形菜园的面积为平方米,求所利用旧墙的长;(2)若米,求矩形菜园面积的最大值.25.(12分)把函数C1:y=ax2﹣2ax﹣3a(a≠0)的图象绕点P(m,0)旋转180°,得到新函数C2的图象,我们称C2是C1关于点P的相关函数.C2的图象的对称轴与x轴交点坐标为(t,0).(1)填空:t的值为(用含m的代数式表示)(2)若a=﹣1,当≤x≤t时,函数C1的最大值为y1,最小值为y2,且y1﹣y2=1,求C2的解析式;(3)当m=0时,C2的图象与x轴相交于A,B两点(点A在点B的右侧).与y轴相交于点D.把线段AD原点O逆时针旋转90°,得到它的对应线段A′D′,若线A′D′与C2的图象有公共点,结合函数图象,求a的取值范围.26.方方驾驶小汽车匀速地从地行驶到地,行驶里程为千米,设小汽车的行驶时间为(单位:小时),行驶速度为(单位:千米/小时),且全程速度限定为不超过千米/小时.(1)求关于的函数表达式,并写出自变量的取值范围;(2)方方上午点驾驶小汽车从地出发;①方方需在当天点分至点(含点分和点)间到达地,求小汽车行驶速度的范围;②方方能否在当天点分前到达地?说明理由.
参考答案一、选择题(每题4分,共48分)1、B【分析】本题可先由反比例函数图象得到字母a的正负,再与一次函数y=ax+1的图象相比较看是否一致即可解决问题.【详解】解:A、由函数的图象可知a>0,由y=ax+1(a≠0)的图象可知a<0故选项A错误.B、由函数的图象可知a>0,由y=ax+1(a≠0)的图象可知a>0,且交于y轴于正半轴,故选项B正确.C、y=ax+1(a≠0)的图象应该交于y轴于正半轴,故选项C错误.D、由函数的图象可知a<0,由y=ax+1(a≠0)的图象可知a>0,故选项D错误.故选:B.【点睛】本题考查反比例函数的图象、一次函数的图象等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.2、C【详解】由图可知,将△OAC顺时针旋转90°后可与△ODB重合,∴S△OAC=S△OBD;因此S阴影=S扇形OAB+S△OBD-S△OAC-S扇形OCD=S扇形OAB-S扇形OCD=π×(9-1)=2π.故选C.3、B【分析】根据二次根式和分式成立的条件得到关于x的不等式,求解即可.【详解】解:由题意得,解得.故选:B【点睛】本题考查了代数式有意义的条件,一般情况下,若代数式有意义,则分式的分母不等于1,二次根式被开方数大于等于1.4、B【分析】根据表格的数据,以及二次函数的性质,即可对每个选项进行判断.【详解】解:(1)函数的对称轴为:x=1,最小值为﹣4,故错误,不符合题意;(1)从表格可以看出,当﹣<x<1时,y<0,符合题意;(3)﹣1<x1<0,3<x1<4时,x1离对称轴远,故错误,不符合题意;故选择:B.【点睛】本题考查了二次函数的最值,抛物线与x轴的交点,仔细分析表格数据,熟练掌握二次函数的性质是解题的关键.5、C【解析】连接OD,根据勾股定理求出CD,根据直角三角形的性质求出∠AOD,根据扇形面积公式、三角形面积公式计算,得到答案.【详解】解:连接OD,在Rt△OCD中,OC=OD=2,∴∠ODC=30°,CD=∴∠COD=60°,∴阴影部分的面积=,故选:C.【点睛】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.6、A【分析】根据极差的概念最大值减去最小值即可求解.【详解】解:这组数据:0、-1、3、2、1的极差是:3-(-1)=1.
故选A.【点睛】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.7、A【解析】根据正数大于0,负数小于0,负数绝对值越大值越小即可求解.【详解】解:在、、、这四个数中,大小顺序为:,所以最小的数是.故选A.【点睛】此题考查了有理数的大小的比较,解题的关键利用正负数的性质及数轴可以解决问题.8、B【解析】试题分析:∵OB=OC,∠OCB=40°,∴∠BOC=180°-2∠OCB=100°,∴由圆周角定理可知:∠A=∠BOC=50°.故选B.9、B【解析】试题解析:水涨船高是必然事件,A不正确;守株待兔是随机事件,B正确;水中捞月是不可能事件,C不正确缘木求鱼是不可能事件,D不正确;故选B.考点:随机事件.10、C【详解】如图,由题意得:AP=3,AB=6,∴在圆锥侧面展开图中故小猫经过的最短距离是故选C.11、B【分析】根据题意:第一年的产量+第二年的产量+第三年的产量=1且今后两年的产量都比前一年增长一个相同的百分数x.【详解】解:已设这个百分数为x.200+200(1+x)+200(1+x)2=1.故选B.【点睛】本题考查对增长率问题的掌握情况,理解题意后以三年的总产量做等量关系可列出方程.12、B【解析】根据中心对称图形的定义以及轴对称图形的定义进行判断即可得出答案.【详解】A.是轴对称图形,不是中心对称图形,故本选项错误;B.是轴对称图形,也是中心对称图形,故本选项正确;C.是轴对称图形,不是中心对称图形,故本选项错误;D.不是轴对称图形,是中心对称图形,故本选项错误.故选:B.【点睛】此题主要考查了中心对称图形与轴对称图形的定义,根据定义得出图形形状是解决问题的关键.二、填空题(每题4分,共24分)13、【分析】过点A作AH⊥DE,垂足为H,由旋转的性质可得AE=AD=6,∠CAE=∠BAD=15°,∠DAE=∠BAC=90°,再根据等腰直角三角形的性质可得∠HAE=45°,AH=3,进而得∠HAF=30°,继而求出AF长即可求得答案.【详解】过点A作AH⊥DE,垂足为H,∵∠BAC=90°,AB=AC,将△ABD绕点A逆时针方向旋转,使AB与AC重合,点D的对应点E,∴AE=AD=6,∠CAE=∠BAD=15°,∠DAE=∠BAC=90°,∴DE=,∠HAE=∠DAE=45°,∴AH=DE=3,∠HAF=∠HAE-∠CAE=30°,∴AF=,∴CF=AC-AF=,故答案为.【点睛】本题考查了旋转的性质,等腰直角三角形的性质,勾股定理,解直角三角形等知识,正确添加辅助线构建直角三角形、灵活运用相关知识是解题的关键.14、17【解析】∵Rt△ABC中,∠C=90°,∴tanA=,∵,∴AC=8,∴AB==17,故答案为17.15、【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,根据相似比即可求得位似图形对应点的坐标.【详解】由题意,得和是以坐标原点为位似中心的位似图形,相似比为2则的坐标为,故答案为:.【点睛】此题考查了位似图形与坐标的关系,熟练掌握,即可解题.16、1【分析】先计算这20名同学各自家庭一个月的节水量的平均数,即样本平均数,然后乘以总数400即可解答.【详解】解:20名同学各自家庭一个月平均节约用水是:
(0.2×4+0.25×6+0.3×3+0.4×7)÷20=0.3(m3),
因此这400名同学的家庭一个月节约用水的总量大约是:
400×0.3=1(m3),
故答案为:1.【点睛】本题考查了通过样本去估计总体,只需将样本“成比例地放大”为总体即可,关键是求出样本的平均数.17、【分析】延长交BC于点M,连接FM,延长交DA的延长线于点P,作DN⊥CP,先证明∽,利用相似的性质求出,然后证明∽,利用相似的性质求出EP,从而得到DP的长,再利用勾股定理求出CP的长,最后利用等面积法计算DN即可.【详解】如图,延长交BC于点M,连接FM,延长交DA的延长线于点P,作DN⊥CP,由题可得,,,∴,∵F为AB中点,∴,又∵FM=FM,∴≌(HL),∴,,由折叠可知,,∴,又∵∴,∴∽,∴,∵AD=4,E为四等分点,∴,∴,∴,∴,∵,∴,,∴∽,∴,即,∴EP=6,∴DP=EP+DE=7,在中,,∵,∴.故答案为:.【点睛】本题考查了折叠的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理以及等面积法等知识,较为综合,难度较大,重点在于作辅助线构造全等或相似三角形.18、.【解析】试题分析:x(x-1)=0解得:=0,=1.考点:解一元二次方程.三、解答题(共78分)19、(1)21,19;(2)售价为22元时,毛利最大,最大毛利为1元【分析】(1)根据销售问题的等量关系:每天获得毛利=每千克利润×销售量,分涨价和降价两种情况列出一元二次方程确定售价即可;(2)根据销售问题的等量关系:每天获得毛利=每千克利润×销售量,分涨价和降价两种情况设每天的毛利为w元,涨价和降价两种情况列出二次函数求出售价进行比较即可确定售价和最大毛利.【详解】解:(1)根据题意,得①设售价涨价x元,(20﹣15+x)(450﹣50x)=2400解得x1=1,x2=3,∵调整价格也兼顾顾客利益,∴x=1,则售价为21元;②设售价降价y元,(20﹣15﹣y)(450+150y)=2400解得y1=y2=1,则售价为19元;答:调整价格也兼顾顾客利益,售价应定为19元.(2)根据题意,得①设售价涨价x元时,每天的毛利为w1元,w1=(20﹣15+x)(450﹣50x)=﹣50x2+200x+2250=﹣50(x﹣2)2+1.当售价涨价2元,即售价为22元时,毛利最大,最大毛利为1元;②设售价降价y元时,每天的毛利为w2元,w2=(20﹣15﹣y)(450+150y)=﹣150y2+300y+2250=﹣150(y﹣1)2+2400当降价为1元时,即售价为19元时,毛利最大,最大毛利为2400元.综上所述,售价为22元时,毛利最大,最大毛利为1元.【点睛】本题考查了一元二次方程的应用,二次函数的应用,二次函数的性质,解决本题的关键是找到题目中蕴含的等量关系,熟练掌握二次函数的性质,能够将一般式转化为顶点式.20、(1)①y=﹣10x+1000;②w=﹣10x2+1400x﹣40000;(2)不超过10000元的情况下,使月销售利润达到8000元,销售单价应定为80元;(3)售价定为70元时会获得最大利润,最大利润是9000元【分析】(1)根据题意可以得到月销售利润w(单位:元)与售价x(单位:元/千克)之间的函数解析式;(2)根据题意可以得到方程和相应的不等式,从而可以解答本题;(3)根据(1)中的关系式化为顶点式即可解答本题.【详解】解:(1)①由题意可得:y=500﹣(x﹣50)×10=﹣10x+1000;②w=(x﹣40)[﹣10x+1000]=﹣10x2+1400x﹣40000;(2)设销售单价为a元,,解得,a=80,答:商店想在月销售成本不超过10000元的情况下,使月销售利润达到8000元,销售单价应定为80元;(3)∵y=﹣10x2+1400x﹣40000=﹣10(x﹣70)2+9000,∴当x=70时,y取得最大值,此时y=9000,答:当售价定为70元时会获得最大利润,最大利润是9000元;【点睛】本题考查了二次函数的实际应用,掌握解二次函数的方法、二次函数的性质是解题的关键.21、(3)或;A、;B、或【分析】(3)根据两数相除,异号得负解答;A:先根据两数相除,同号得正,异号得负,把不等式转化成不等式组,然后根据一元一次不等式组的解法求解即可.B:先根据两数相乘,同号得正,异号得负,把不等式转化成不等式组,然后根据一元一次不等式组的解法求解即可.【详解】解:(3)若,则或;A:∵,由题意得:∴①或②解①得,解②无解∴不等式的解集是B:求不等式的解集解:由题意得:①或②解不等式组①得,解不等式组②得∴不等式的解集是或,【点睛】本题考查了一元一次不等式组的应用,读懂题目信息,理解不等式转化为不等式组的方法是解题的关键.22、(1)y=-3x2+330x-8568;(2)每件销售价为55元时,能使每天毛利润最大,最大毛利润为507元.【分析】(1)根据毛利润=销售价−进货价可得y关于x的函数解析式;(2)将(1)中函数关系式配方可得最值情况.【详解】(1)根据题意,y=(x-42)(204-3x)=-3x2+330x-8568;(2)y=-3x2+330x-8568=-3(x-55)2+507因为-3<0,所以x=55时,y有最大值为507.答:每件销售价为55元时,能使每天毛利润最大,最大毛利润为507元.【点睛】本题主要考查二次函数的应用,理解题意根据相等关系列出函数关系式,并熟练掌握二次函数的性质是解题的关键.23、(1)见解析;(2),【分析】(1)将方程转化为一般式,然后得出根的判别式,得出判别式为非负数得出答案;(2)将代入方程求出的值,然后根据解方程的方法得出另一个根.【详解】解:(1)∴对于任意实数,方程总有两个不相等的实数根;(2)当时,,∴【点睛】本题考查了解一元二次的方程以及判别式.24、(1)的长为;(2)当时,矩形菜园面积的最大值为.【分析】(1)设AB=xm,则BC=(100-2x)m,列方程求解即可;
(2)设AB=xm,由题意得关于x的二次函数,利用二次函数的性质即可解决问题.【详解】(1)设AB=,则BC,根据题意得,解得,,当时,,不合题意舍去;当时,,答:AD的长为;(2)设AD=,∴则时,的最大值为;答:当时,矩形菜园面积的最大值为.【点睛】本题考查了一元二次方程和二次函数在实际问题中的应用,根据题意正确列式并明确二次函数的相关性质,是解题的关键.25、(1)2m﹣1;(2)C2:y=x2﹣4x;(3)0<a或a≥1或a≤﹣.【分析】(1)C1:y=ax2−2ax−3a=a(x−1)2−4a,顶点(1,−4a)围绕点P(m,0)旋转180°的对称点为(2m−1,4a),即可求解;(2)分≤t<1、1≤t≤、t>三种情况,分别求解,(3)分a>0、a<0两种情况,分别求解.【详解】解:(1)C1:y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,顶点(1,﹣4a)围绕点P(m,0)旋转180°的对称点为(2m﹣1,4a),C2:y=﹣a(x﹣2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度个人法律服务委托合同4篇
- 二零二五年度路佳与配偶离婚协议:财产分配与子女抚养责任书3篇
- 2025版宿舍管理员职责聘用合同6篇
- 2025版团购民宿项目合同3篇
- 二零二五年度茅台酒经销商年度销售目标责任书3篇
- 二零二五年度宠物救助与领养支持基金合同4篇
- 二零二五年度商业地产项目购置合同书3篇
- 2025年度门窗行业绿色供应链管理服务合同8篇
- 2025年度彩钢幕墙设计与施工总承包合同3篇
- 二零二五年度宠物宠物托运服务合同规范范本4篇
- 《天润乳业营运能力及风险管理问题及完善对策(7900字论文)》
- xx单位政务云商用密码应用方案V2.0
- 农民专业合作社财务报表(三张报表)
- 安宫牛黄丸的培训
- 妇科肿瘤护理新进展Ppt
- 动土作业专项安全培训考试试题(带答案)
- 大学生就业指导(高职就业指导课程 )全套教学课件
- 死亡病例讨论总结分析
- 第二章 会展的产生与发展
- 空域规划与管理V2.0
- JGT266-2011 泡沫混凝土标准规范
评论
0/150
提交评论