




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届北京市育英学校数学高二下期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.将点的直角坐标化成极坐标为()A. B. C. D.2.设全集,集合,,则()A. B. C. D.3.设,,则“”是“”的()A.充要条件 B.充分而不必要条件 C.必要而不充分条件 D.既不充分也不必要条件4.在某次高三联考数学测试中,学生成绩服从正态分布,若在内的概率为0.75,则任意选取一名学生,该生成绩高于115的概率为()A.0.25 B.0.1 C.0.125 D.0.55.已知复数为虚数单位,是的共轭复数,则()A. B. C. D.6.下列命题为真命题的个数是()①,是无理数;②命题“∃∈R,”的否定是“∀x∈R,+1≤3x”;③命题“若,则”的逆否命题为真命题;④。A.1 B.2 C.3 D.47.如果(,表示虚数单位),那么()A.1 B. C.2 D.08.下列四个命题中真命题是()A.同垂直于一直线的两条直线互相平行B.底面各边相等,侧面都是矩形的四棱柱是正四棱柱C.过空间任一点与两条异面直线都垂直的直线有且只有一条D.过球面上任意两点的大圆有且只有一个9.函数在区间上的最大值是()A. B. C. D.10.设集合U=x1≤x≤10,x∈Z,A=1,3,5,7,8,B=2,4,6,8A.2,4,6,7 B.2,4,5,9 C.2,4,6,8 D.2,4,6,11.曲线在点处的切线与直线垂直,则点的坐标为()A. B.或 C. D.或12.已知为定义在上的奇函数,当时,,则的值域为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.除以9的余数为_______;14.已知矩阵,,则矩阵________.15.已知平面向量,满足,,则向量与夹角的取值范围是______.16.已知实数满足,则的最大值为____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列{an},等比数列{bn}满足:a1=b1=1,a2=b2,2a3-b3=1.(1)求数列{an},{bn}的通项公式;(2)记cn=anbn,求数列{cn}的前n项和Sn.18.(12分)在数列,中,,,且,,成等差数列,,,成等比数列().(1)求,,及,,;(2)根据计算结果,猜想,的通项公式,并用数学归纳法证明.19.(12分)已知复数,其中是虚数单位,根据下列条件分别求实数的值.(Ⅰ)复数是纯虚数;(Ⅱ)复数在复平面内对应的点在直线上.20.(12分)选修4-5:不等式选讲已知函数.(Ⅰ)当时,求不等式的解集;(Ⅱ)当不等式的解集为时,求实数的取值范围.21.(12分)已知椭圆C:的一个焦点与上下顶点构成直角三角形,以椭圆C的长轴长为直径的圆与直线相切.1求椭圆C的标准方程;2设过椭圆右焦点且不重合于x轴的动直线与椭圆C相交于A、B两点,探究在x轴上是否存在定点E,使得为定值?若存在,试求出定值和点E的坐标;若不存在,请说明理由.22.(10分)假定某篮球运动员每次投篮命中率均为.现有3次投篮机会,并规定连续两次投篮均不中即终止投篮,已知该运动员不放弃任何一次投篮机会,且恰好用完3次投篮机会的概率是.(1)求的值;(2)设该运动员投篮命中次数为,求的概率分布及数学期望.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】分析:求出,且在第三象限,由此能将点M的直角坐标化成极坐标.详解:点M的直角坐标,,在第三象限,.将点M的直角坐标化成极坐标.故选B.点睛:极坐标与直角坐标的互化,常用方法有代入法、平方法等,还经常会用到同乘(同除以)ρ等技巧.2、A【解题分析】
先化简集合A,B,再判断每一个选项得解.【题目详解】∵,,由此可知,,,,故选:A.【题目点拨】本题主要考查集合的化简和运算,意在考查学生对这些知识的理解掌握水平,属于基础题.3、C【解题分析】不能推出,反过来,若则成立,故为必要不充分条件.4、C【解题分析】
根据正态曲线的对称性求解即可得到所求概率.【题目详解】由题意得,区间关于对称,所以,即该生成绩高于115的概率为.故选C.【题目点拨】本题考查根据正态曲线的对称性求在给定区间上的概率,求解的关键是把所给区间用已知区间表示,并根据曲线的对称性进行求解,考查数形结合的应用,属于基础题.5、C【解题分析】,选C.6、B【解题分析】
由①中,比如当时,就不成立;②中,根据存在性命题与全称命题的关系,即可判定;③中,根据四种命题的关系,即可判定;④中,根据导数的运算,即可判定,得到答案.【题目详解】对于①中,比如当时,就不成立,所以不正确;对于②中,命题“”的否定是“”,所以正确;③中,命题“若,则”为真命题,其逆否命题为真命题,所以正确;对于④中,根据导数的计算,可得,所以错误;故选B.【题目点拨】本题主要考查了命题真假的判定,其中解答中熟记全称命题与存在性命题的关系,以及四种命题的关系,导数的运算是解答的关键,着重考查了推理与运算能力,属于基础题.7、B【解题分析】分析:复数方程左边分子、分母同乘分母的共轭复数,化简为的形式,利用复数相等求出即可详解:解得故选点睛:本题主要考查了复数相等的充要条件,运用复数的乘除法运算法则求出复数的表达式,令其实部与虚部分别相等即可求出答案.8、C【解题分析】
通过“垂直于同一直线的两条直线的位置关系不确定”可判断A是否正确;通过“底面各边相等,侧面都是矩形的四棱柱底面不一定是正方形”可判断B是否正确;通过“两条异面直线的公垂线是唯一的,所以经过空间任一点与两条异面直线都垂直的直线有且只有一条”可判断C是否正确;通过“经过球面上任意两点的大圆有无数个”可判断D是否正确。【题目详解】A项:垂直于同一直线的两条直线不一定互相平行,故A错;B项:底面各边相等,侧面都是矩形的四棱柱是直四棱柱,不一定是正四棱柱,故B错;C项:两条异面直线的公垂线是唯一的,所以经过空间任一点与两条异面直线都垂直的直线有且只有一条,故C正确;D项:过球面上任意两点的大圆有无数个,故D错,故选C项。【题目点拨】本题考查了命题真假的判定以及解析几何的相关性质,考查了推理能力,考查了数形结合思想,属于基础题,在进行解析几何的相关性质的判断时,可以根据图像来判断。9、B【解题分析】
函数,,令,解得x.利用三角函数的单调性及其导数即可得出函数的单调性.【题目详解】函数,,令,解得.∴函数在内单调递增,在内单调递减.∴时函数取得极大值即最大值..故选B.【题目点拨】本题考查了三角函数的单调性,考查利用导数研究函数的单调性极值与最值、考查了推理能力与计算能力,属于中档题.求三角函数的最值问题,一般是通过两角和差的正余弦公式将函数表达式化为一次一角一函数,或者化为熟悉的二次函数形式的复合函数来解决.10、D【解题分析】
先求出CUA,再求∁【题目详解】由题得CU所以∁UA∩B故选:D【题目点拨】本题主要考查补集和交集的运算,意在考查学生对这种知识的理解掌握水平,属于基础题.11、B【解题分析】试题分析:设,或,点的坐标为或考点:导数的几何意义12、A【解题分析】
先用基本不等式求时函数的值域,然后利用函数奇偶性的性质即可得到整个函数的值域.【题目详解】当时,(当且仅当时取等号),又为奇函数,当x<0时,,则的值域为.故选:A.【题目点拨】本题考查函数奇偶性的应用,考查利用基本不等式求函数最值问题,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
将变为,利用二项式定理展开可知余数因不含因数的项而产生,从而可知余数为.【题目详解】由题意得:除以的余数为:本题正确结果:【题目点拨】本题考查余数问题的求解,考查学生对于二项式定理的掌握情况,关键是能够配凑出除数的形式,属于常考题型.14、【解题分析】
先求出,再与矩阵B相乘即可.【题目详解】由已知,,所以.故答案为:【题目点拨】本题考查矩阵的乘法运算,涉及到可逆矩阵的求法,考查学生的基本计算能力,是一道容易题.15、【解题分析】
由已知,得,由,得,由不等式可知,再由,得,最后由可得解.【题目详解】由,,得,即由,得,即由,得由,得所以,.故答案为:【题目点拨】本题考查了向量及其模的运算,考查了向量的夹角公式和基本不等式,考查了计算能力,属于中档题.16、2【解题分析】
根据约束条件得到可行域,令,则取最大值时,在轴截距最大;通过平移可知过时即可,代入求得最大值.【题目详解】由约束条件可得可行域如下图阴影部分所示:令,则取最大值时,在轴截距最大通过平移可知当过时,在轴截距最大本题正确结果:【题目点拨】本题考查线性规划求解最值的问题,关键是将问题转化为截距最值的求解问题,属于常考题型.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)an=bn=1或an=2n-1,bn=3n-1.(2)Sn=n或Sn=(n-1)×3n+1.【解题分析】
(1)先解方程组得到,即得数列{an},{bn}的通项公式.(2)利用错位相减求数列{cn}的前n项和Sn.【题目详解】(1)设{an}的公差为d,{bn}的公比为q,由已知可得,解得.从而an=bn=1或an=2n-1,bn=3n-1.(2)①当an=bn=1时,cn=1,所以Sn=n;②当an=2n-1,bn=3n-1时,cn=(2n-1)×3n-1,Sn=1+3×3+5×32+7×33+…+(2n-1)×3n-1,3Sn=3+3×32+5×33+7×34+…+(2n-1)×3n,从而有(1-3)Sn=1+2×3+2×32+2×33+…+2×3n-1-(2n-1)×3n=1+2(3+32+…+3n-1)-(2n-1)×3n=1+2×-(2n-1)×3n=-2(n-1)×3n-2,故Sn=(n-1)×3n+1.综合①②,得Sn=n或Sn=(n-1)×3n+1.【题目点拨】(1)本题主要考查等比等差数列通项的求法,考查错位相减求和,意在考查学生对这些知识的掌握水平和分析推理计算能力.(2)数列,其中是等差数列,是等比数列,则采用错位相减法.18、(1),,,,,(2)猜想,,证明见解析【解题分析】分析:(1)根据条件中,,成等差数列,,,成等比数列及所给数据求解即可.(2)用数学归纳法证明.详解:(1)由已知条件得,,由此算出,,,,,.(2)由(1)的计算可以猜想,,下面用数学归纳法证明:①当时,由已知,可得结论成立.②假设当(且)时猜想成立,即,.则当时,,,因此当时,结论也成立.由①②知,对一切都有,成立.点睛:用数学归纳法证明问题时要严格按照数学归纳法的步骤书写,特别是对初始值的验证不可省略,有时可能要取两个(或两个以上)初始值进行验证,初始值的验证是归纳假设的基础;第二步的证明是递推的依据,证明时必须要用到归纳假设,否则就不是数学归纳法.19、(Ⅰ);(Ⅱ)或.【解题分析】
(Ⅰ)根据纯虚数为实部为0,虚部不为0即可得到方程,于是求得答案;(Ⅱ)将复数在复平面内对应的点表示出来,代入直线上,即可得到答案.【题目详解】解:因为,复数可表示为,(Ⅰ)因为为纯虚数,所以解得;(Ⅱ)复数在复平面内对应的点坐标为因为复数在复平面内对应的点在直线上所以即解得或.【题目点拨】本题主要考查纯虚数,复数的几何意义等相关概念,难度较小.20、(Ⅰ)(Ⅱ)或【解题分析】
(Ⅰ)根据的范围得到分段函数的解析式,从而分别在三段区间上求解不等式,取并集得到所求解集;(Ⅱ)由绝对值三角不等式得到的最小值,则最小值大于,得到不等式,解不等式求得结果.【题目详解】(Ⅰ)时,当时,,即当时,,即当时,,无解综上,的解集为(Ⅱ)当,即时,时等号成立;当,即时,时等号成立所以的最小值为即或【题目点拨】本题考查含绝对值不等式的求解、绝对值三角不等式的应用问题,属于常规题型.21、(1);(2)定点为.【解题分析】分析:(1)根据一个焦点与短轴两端点的连线相互垂直,以椭圆的长轴为直径的圆与直线相切,结合性质,列出关于、、的方程组,求出、、,即可得结果;(2)设直线联立,得.假设轴上存在定点,由韦达定理,利用平面向量数量积公式可得,要使为定值,则的值与无关,所以,从而可得结果.详解:(1)由题意知,,解得则椭圆的方程是(2)①当直线的斜率存在时,设直线联立,得所以假设轴上存在定点,使得为定值。所以要使为定值,则的值与无关,所以解得,此时为定值,定点为②当直线的斜率不存在时,,也成立所以,综上所述,在轴上存在定点,使得为定值点睛:本题主要考查待定待定系数法求椭圆标准方程、圆锥曲线的定值问题以及点在曲线上问题,属于难题.探索圆锥曲线的定值问题常见方法有两种:①从特殊入手,先根据特殊位置和数值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房地产项目施工合同定交底模板
- 集体房地产土地转让合同10篇
- 常用版居间房屋租赁合同10篇
- 北京市二零二五年度书店装修与图书分类系统合同
- 2025年版民间借款抵押合同标准范本
- 二零二五版最简单的建筑材料采购合同书范例
- 公共区域装修合同书范例二零二五年
- 工程拨款协议合同二零二五年
- 搭棚施工合同范例新
- 运输合同书的定义
- 36 阶段统计项目风险管理表甘特图
- 2025-2030中国电信增值行业运行状况与发展前景预测研究报告
- 2025年吉林铁道职业技术学院单招职业倾向性考试题库含答案
- 品牌总监的面试题及答案
- 贵州高品质住宅设计导则
- 装修公司设计经理述职报告
- 水电配电箱知识培训课件
- 初中所有数学公式大全
- 多感知融合的智能垃圾识别分拣实验系统设计
- 【珍藏版】鲁教版初中英语全部单词表(带音标、按单元顺序)
- 9《小水滴的诉说》(教学设计)-2023-2024学年统编版道德与法治二年级下册
评论
0/150
提交评论