2024届海南省文昌侨中高二数学第二学期期末调研模拟试题含解析_第1页
2024届海南省文昌侨中高二数学第二学期期末调研模拟试题含解析_第2页
2024届海南省文昌侨中高二数学第二学期期末调研模拟试题含解析_第3页
2024届海南省文昌侨中高二数学第二学期期末调研模拟试题含解析_第4页
2024届海南省文昌侨中高二数学第二学期期末调研模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届海南省文昌侨中高二数学第二学期期末调研模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是A.甲地:总体均值为3,中位数为4 B.乙地:总体均值为1,总体方差大于0C.丙地:中位数为2,众数为3 D.丁地:总体均值为2,总体方差为33.将个不同的小球放入个盒子中,则不同放法种数有()A. B. C. D.4.函数是定义在区间上的可导函数,其导函数为,且满足,则不等式的解集为()A. B.C. D.5.已知某同学在高二期末考试中,A和B两道选择题同时答对的概率为,在A题答对的情况下,B题也答对的概率为,则A题答对的概率为()A. B. C. D.6..从字母中选出4个数字排成一列,其中一定要选出和,并且必须相邻(在的前面),共有排列方法()种.A. B. C. D.7.设有下面四个命题若,则;若,则;若,则;若,则.其中真命题的个数为()A. B. C. D.8.电脑芯片的生产工艺复杂,在某次生产试验中,得到组数据,,,,,.根据收集到的数据可知,由最小二乘法求得回归直线方程为,则()A. B. C. D.9.如图,正方体的棱长为4,动点E,F在棱上,动点P,Q分别在棱AD,CD上.若,,,(大于零),则四面体PEFQ的体积A.与都有关 B.与m有关,与无关C.与p有关,与无关 D.与π有关,与无关10.已知数列的前项和为,且,若,则()A. B. C. D.11.某公司为确定明年投入某产品的广告支出,对近年的广告支出与销售额(单位:百万元)进行了初步统计,得到下列表格中的数据:经测算,年广告支出与年销售额满足线性回归方程,则的值为()A. B. C. D.12.若随机变量,其均值是80,标准差是4,则和的值分别是()A.100,0.2 B.200,0.4 C.100,0.8 D.200,0.6二、填空题:本题共4小题,每小题5分,共20分。13.若是定义在上的可导函数,且,对恒成立.当时,有如下结论:①,②,③,④,其中一定成立的是____.14.定积分的值等于________.15.执行如图所示的程序框图,则输出的i的值为.16.已知,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,为的导函数.证明:(1)在区间存在唯一极小值点;(2)有且仅有个零点.18.(12分)已知极点为直角坐标系的原点,极轴为轴正半轴且单位长度相同的极坐标系中曲线,(为参数).(1)求曲线上的点到曲线距离的最小值;(2)若把上各点的横坐标都扩大为原来的2倍,纵坐标扩大为原来的倍,得到曲线,设,曲线与交于两点,求.19.(12分)已知函数(且)的图象过定点P,且点P在直线(,且)上,求的最小值.20.(12分)一个盒子装有六张卡片,上面分别写着如下六个函数:,,,(I)从中任意拿取张卡片,若其中有一张卡片上写着的函数为奇函数,在此条件下,求两张卡片上写着的函数相加得到的新函数为奇函数的概率;(II)现从盒子中逐一抽取卡片,且每次取出后均不放回,若取到一张写有偶函数的卡片则停止抽取,否则继续进行,求抽取次数的分布列和数学期望.21.(12分)如图,圆柱的轴截面是,为下底面的圆心,是母线,.(1)证明:平面;(2)求三棱锥的体积.22.(10分)证明:当时,.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

化简求得复数为,然后根据复数的几何意义,即可得到本题答案.【题目详解】因为,所以在复平面内对应的点为,位于第一象限.故选:A【题目点拨】本题主要考查复数的四则运算和复数的几何意义,属基础题.2、D【解题分析】试题分析:由于甲地总体均值为,中位数为,即中间两个数(第天)人数的平均数为,因此后面的人数可以大于,故甲地不符合.乙地中总体均值为,因此这天的感染人数总数为,又由于方差大于,故这天中不可能每天都是,可以有一天大于,故乙地不符合,丙地中中位数为,众数为,出现的最多,并且可以出现,故丙地不符合,故丁地符合.考点:众数、中位数、平均数、方差3、B【解题分析】试题分析:采用分步计数原理来求解:分3步,每一步4种方法,不同方法种数有种考点:分步计数原理4、D【解题分析】

构造函数,对函数求导得到函数的单调性,进而将原不等式转化为,,进而求解.【题目详解】根据题意,设,则导数;函数在区间上,满足,则有,则有,即函数在区间上为增函数;,则有,解可得:;即不等式的解集为;故选:D.【题目点拨】这个题目考查了函数的单调性的应用,考查了解不等式的问题;解函数不等式问题,可以直接通过函数的表达式得到结果,如果直接求解比较繁琐,可以研究函数的单调性,零点等问题,将函数值大小问题转化为自变量问题.5、B【解题分析】分析:根据条件概率公式计算即可.详解:设事件A:答对A题,事件B:答对B题,则,..故选:B.点睛:本题考查了条件概率的计算,属于基础题.6、C【解题分析】

排列方法为,选C.7、C【解题分析】分析:对四个命题逐一分析即可.详解:对若,则,故不正确;对若,则,故正确;对若,则,故正确;对若,对称轴为,则,故正确.故选:C.点睛:本题考查了命题真假的判断,是基础题.8、D【解题分析】分析:根据回归直线方程经过的性质,可代入求得,进而求出的值.详解:由,且可知所以所以选D点睛:本题考查了回归直线方程的基本性质和简单的计算,属于简单题.9、C【解题分析】

连接、交于点,作,证明平面,可得出平面,于此得出三棱锥的高为,再由四边形为矩形知,点到的距离为,于此可计算出的面积为,最后利用锥体的体积公式可得出四面体的体积的表达式,于此可得出结论.【题目详解】如下图所示,连接、交于点,作,在正方体中,平面,且平面,,又四边形为正方形,则,且,平面,即平面,,平面,且,易知四边形是矩形,且,点到直线的距离为,的面积为,所以,四面体的体积为,因此,四面体的体积与有关,与、无关,故选C.【题目点拨】本题考查三棱锥体积的计算,解题的关键在于寻找底面和高,要充分结合题中已知的线面垂直的条件,找三棱锥的高时,只需过点作垂线的平行线可得出高,考查逻辑推理能力,属于难题.10、B【解题分析】分析:根据等差数列的判断方法,确定数列为等差数列,再由等差数列的性质和前n项和公式,即可求得的值.详解:,得数列为等差数列.由等差数列性质:,故选B.点睛:本题考查等差数列的判断方法,等差数列的求和公式及性质,考查了推理能力和计算能力.等差数列的常用判断方法(1)定义法:对于数列,若(常数),则数列是等差数列;(2)等差中项:对于数列,若,则数列是等差数列;(3)通项公式:(为常数,)⇔是等差数列;(4)前项和公式:(为常数,)⇔是等差数列;(5)是等差数列⇔是等差数列.11、D【解题分析】分析:求出,代入回归方程计算,利用平均数公式可得出的值.详解:,,,解得,故选D.点睛:本题主要考查平均数公式的应用,线性回归方程经过样本中心的性质,意在考查综合利用所学知识解决问题的能力,属于基础题.12、C【解题分析】

根据随机变量符合二项分布,根据二项分布的期望和方差的公式和条件中所给的期望和方差的值,得到关于和的方程组,解方程组得到要求的两个未知量.【题目详解】∵随机变量,其均值是80,标准差是4,∴由,∴.故选:C.【题目点拨】本题主要考查分布列和期望的简单应用,通过解方程组得到要求的变量,这与求变量的期望是一个相反的过程,但是两者都要用到期望和方差的公式.二、填空题:本题共4小题,每小题5分,共20分。13、①【解题分析】

构造函数,并且由其导函数的正负判断函数的单调性即可得解.【题目详解】由得即所以所以在和单调递增,因为,所以因为所以在不等式两边同时乘以,得①正确,②、③、④错误.【题目点拨】本题考查构造函数、由导函数的正负判断函数的单调性,属于难度题.14、ln1【解题分析】

直接根据定积分的计算法则计算即可.【题目详解】,故答案为:ln1.【题目点拨】本题考查了定积分的计算,关键是求出原函数,属于基础题.15、1【解题分析】

由程序框图知该程序的功能是利用循环结构计算并输出变量的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【题目详解】模拟执行如图所示的程序框图如下,判断,第1次执行循环体后,,,;判断,第2次执行循环体后,,,;判断,第3次执行循环体后,,,;判断,退出循环,输出的值为1.【题目点拨】本题主要考查对含有循环结构的程序框图的理解,模拟程序运算可以较好地帮助理解程序的算法功能.16、180【解题分析】,,,故答案为.【方法点晴】本题主要考查二项展开式定理的通项与系数,属于中档题.二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)证明见解析【解题分析】

(1)令,然后得到,得到的单调性和极值,从而证明在区间存在唯一极小值点;(2)根据的正负,得到的单调性,结合,,的值,得到的图像,从而得到的单调性,结合和的值,从而判断出有且仅有个零点.【题目详解】(1)令,,当时,恒成立,当时,.∴在递增,,.故存在使得,时,时,.综上,在区间存在唯一极小值点.(2)由(1)可得时,,单调递减,时,,单调递增.且,.故的大致图象如下:当时,,∴此时,单调递增,而.故存在,使得故在上,的图象如下:综上,时,,时,,时,.∴在递增,在递减,在递增,而,,又当时,,恒成立.故在上的图象如下:∴有且仅有个零点.【题目点拨】本题考查利用导数研究函数的单调性和极值,利用导数研究函数零点个数,属于中档题.18、(1);(2).【解题分析】

(1)将曲线的极坐标方程和的参数方程都化为普通方程,求出圆的圆心坐标和半径长,并利用点到直线的距离公式计算出圆心到直线的距离,即可得出曲线上的点到曲线距离的最小值为;(2)利用伸缩变换求出曲线的普通方程,并将直线的参数方程与曲线的方程联立,利用韦达定理求出.【题目详解】(1)由题意可知,曲线的普通方程为,圆心为,半径长为.在曲线的参数方程中消去参数,得,圆心到直线的距离为,因此,曲线上的点到曲线距离的最小值为;(2)在曲线上任取一点经过伸缩变换得出曲线上一点,则伸缩变换为,得,代入圆的方程得,所以曲线的方程为,将直线的方程与曲线的方程联立,消去、得.设点、所对应的参数分别为、,则,所以,.【题目点拨】本题考查了极坐标方程、直线的参数方程与普通方程之间的转化,考查直线参数方程的几何意义,熟练利用韦达定理求解是解本题的关键,考查计算能力,属于中等题.19、【解题分析】

函数过定点,故,变换得到,展开利用均值不等式计算得到答案.【题目详解】函数(且)的图象过定点,故,即,.当,即时等号成立,故的最小值为.【题目点拨】本题考查了指数函数过定点,均值不等式,意在考查学生的综合应用能力和计算能力.20、(1)(2)数学期望为.【解题分析】

(Ⅰ)所有的基本事件包括两类:一类为两张卡片上写的函数均为奇函数;另一类为两张卡片上写的函数为一个是奇函数,一个为偶函数,先求出基本事件总数为,满足条件的基本事件为两张卡片上写的函数均为奇函数,再求出满足条件的基本事件个数为,由此能求出结果.(Ⅱ)ξ可取1,2,3,1.分别求出对应的概率,由此能求出ξ的分布列和数学期望.【题目详解】解:(Ⅰ)为奇函数;为偶函数;为偶函数;为奇函数;为偶函数;为奇函数,所有的基本事件包括两类:一类为两张卡片上写的函数均为奇函数;另一类为两张卡片上写的函数为一个是奇函数,一个为偶函数;基本事件总数为,满足条件的基本事件为两张卡片上写的函数均为奇函数,满足条件的基本事件个数为,故所求概率.(Ⅱ)可取;;;故的分布列为.的数学期望为.【题目点拨】本题主要考查离散型随机变量的分布列与数学期望,属于中档题.求解该类问题,首先要正确理解题意,其次要准确无误的找出随机变量的所以可能值,计算出相应的概率,写出随机变量的分布列,正确运用均值、方差的公式进行计算,也就是要过三关:(1)阅读理解关;(2)概率计算关;(3)公式应用关.21、(1)证明见解析;(2).【解题分析】

(1)连接交于点,连

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论