![浙江省武义三中2024届高二数学第二学期期末达标测试试题含解析_第1页](http://file4.renrendoc.com/view10/M02/09/02/wKhkGWW-iEeAYRsZAAHf6V0I72A394.jpg)
![浙江省武义三中2024届高二数学第二学期期末达标测试试题含解析_第2页](http://file4.renrendoc.com/view10/M02/09/02/wKhkGWW-iEeAYRsZAAHf6V0I72A3942.jpg)
![浙江省武义三中2024届高二数学第二学期期末达标测试试题含解析_第3页](http://file4.renrendoc.com/view10/M02/09/02/wKhkGWW-iEeAYRsZAAHf6V0I72A3943.jpg)
![浙江省武义三中2024届高二数学第二学期期末达标测试试题含解析_第4页](http://file4.renrendoc.com/view10/M02/09/02/wKhkGWW-iEeAYRsZAAHf6V0I72A3944.jpg)
![浙江省武义三中2024届高二数学第二学期期末达标测试试题含解析_第5页](http://file4.renrendoc.com/view10/M02/09/02/wKhkGWW-iEeAYRsZAAHf6V0I72A3945.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省武义三中2024届高二数学第二学期期末达标测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设在定义在上的偶函数,且,若在区间单调递减,则()A.在区间单调递减 B.在区间单调递增C.在区间单调递减 D.在区间单调递增2.如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的,分别为63,98,则输出的()A.9 B.3 C.7 D.143.已知n,,,下面哪一个等式是恒成立的()A. B.C. D.4.给出下列三个命题:①“若,则”为假命题;②若为真命题,则,均为真命题;③命题,则.其中正确的个数是()A.0 B.1 C.2 D.35.等比数列{}的前n项和为,若则=A.10 B.20 C.20或-10 D.-20或106.知,,,则,,的大小关系为()A. B. C. D.7.抛物线上的一点M到焦点的距离为1,则点M的纵坐标是A. B. C. D.8.设复数z满足=i,则|z|=()A.1 B. C. D.29.我国古代数学名著《九章算术》中割圆术有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”其体现的是一种无限与有限的转化过程,比如在中“…”即代表无限次重复,但原式却是个定值x,这可以通过方程确定出来x=2,类似地不难得到=()A. B.C. D.10.过抛物线的焦点的直线交抛物线于两点,点是原点,若;则的面积为()A. B. C. D.11.下列函数中,在定义域内单调的是()A. B.C. D.12.曲线在点处的切线与直线垂直,则点的坐标为()A. B.或 C. D.或二、填空题:本题共4小题,每小题5分,共20分。13.在的二项展开式中,常数项为________(结果用数值表示)14.在极坐标系中,过点并且与极轴垂直的直线方程是__________.15.如图,把数列中的所有项按照从小到大,从左到右的顺序写成如图所示的数表,且第行有个数.若第行从左边起的第个数记为,则2019这个数可记为______.16.已知某运动队有男运动员名,女运动员名,若现在选派人外出参加比赛,则选出的人中男运动员比女运动员人数多的概率是_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某工厂甲、乙两条相互独立的生产线生产同款产品,在产量一样的情况下通过日常监控得知,甲、乙两条生产线生产的产品为合格品的概率分别为相.(1)若从甲、乙两条生产线上各抽检一件产品。至少有一件合格的概率为.求的值:(2)在(1)的前提下,假设每生产一件不合格的产品,甲、乙两条生产钱损失分别为元和元,若从两条生产线上各随机抽检件产品。估计哪条生产线的损失较多?(3)若产品按照一、二、三等级分类后销售,每件可分别获利元,元,元,现从甲、乙生产线各随机抽取件进行检测,统计结果如图所示。用样本的频率分布估计总体分布,记该工厂生产一件产品的利润为,求的分布列并估计该厂产量为件时利润的期望值.18.(12分)已知数列,的前n项和分别为,,,且.(1)求数列的前n项和;(2)求的通项公式.19.(12分)如图,平面,在中,,,交于点,,,,.(1)证明:;(2)求直线与平面所成角的正弦值.20.(12分)如图,在空间四边形OABC中,已知E是线段BC的中点,G在AE上,且.试用向量,,表示向量;若,,,,求的值.21.(12分)已知函数是上的奇函数(为常数),,.(1)求实数的值;(2)若对任意,总存在,使得成立,求实数的取值范围;(3)若不等式成立,求证实数的取值范围.22.(10分)已知函数,(其中,为自然对数的底数).(1)讨论函数的单调性;(2)若分别是的极大值点和极小值点,且,求证:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
根据题设条件得到函数是以2为周期的周期函数,同时关于对称的偶函数,根据对称性和周期性,即可求解.【题目详解】由函数满足,所以是周期为2的周期函数,由函数在区间单调递减,可得单调递减,所以B不正确;由函数在定义在上的偶函数,在区间单调递减,可得在区间单调递增,所以A不正确;又由函数在定义在上的偶函数,则,即,所以函数的图象关于对称,可得在区间单调递增,在在区间单调递增,所以C不正确,D正确,故选D.【题目点拨】本题主要考查了函数的单调性与对称性的应用,以及函数的周期性的判定,着重考查了推理与运算能力,属于基础题.2、C【解题分析】由,不满足,则变为,由,则变为,由,则,由,则,由,则,由,则,由,退出循环,则输出的值为,故选C.3、B【解题分析】
利用排列数、组合数公式以及组合数的性质可对各选项中的等式的正误进行判断.【题目详解】由组合数的定义可知,A选项错误;由排列数的定义可知,B选项正确;由组合数的性质可知,则C、D选项均错误.故选B.【题目点拨】本题考查排列数、组合数的定义以及组合数的性质的应用,意在考查对这些公式与性质的理解应用,属于基础题.4、B【解题分析】试题分析:①若,则且,所以①正确;②若为真命题,则,应至少有一个是真命题,所以②错;③正确.考点:1.四种命题;2.命题的否定.5、B【解题分析】
由等比数列的性质可得,S10,S20﹣S10,S30﹣S20成等比数列即(S20﹣S10)2=S10•(S30﹣S20),代入可求.【题目详解】由等比数列的性质可得,S10,S20﹣S10,S30﹣S20成等比数列,且公比为∴(S20﹣S10)2=S10•(S30﹣S20)即解=20或-10(舍去)故选B.【题目点拨】本题主要考查了等比数列的性质(若Sn为等比数列的前n项和,且Sk,S2k﹣Sk,S3k﹣S2k不为0,则其成等比数列)的应用,注意隐含条件的运用6、A【解题分析】由题易知:,∴故选A点睛:利用指数函数对数函数及幂函数的性质比较实数或式子的大小,一方面要比较两个实数或式子形式的异同,底数相同,考虑指数函数增减性,指数相同考虑幂函数的增减性,当都不相同时,考虑分析数或式子的大致范围,来进行比较大小,另一方面注意特殊值的应用,有时候要借助其“桥梁”作用,来比较大小.7、B【解题分析】
由抛物线方程化标准方程为,再由焦半径公式,可求得。【题目详解】抛物线为,由焦半径公式,得。选B.【题目点拨】抛物线焦半径公式:抛物线,的焦半径公式。抛物线,的焦半径公式。抛物线,的焦半径公式。抛物线,的焦半径公式。8、A【解题分析】试题分析:由题意得,,所以,故选A.考点:复数的运算与复数的模.9、C【解题分析】
根据已知求的例子,令,即,解方程即可得到的值.【题目详解】令,即,即,解得(舍),故故选:C【题目点拨】本题考查归纳推理,算术和方程,读懂题中整体代换的方法、理解其解答过程是关键,属于基础题.10、C【解题分析】
试题分析:抛物线焦点为,准线方程为,由得或所以,故答案为C.考点:1、抛物线的定义;2、直线与抛物线的位置关系.11、A【解题分析】
指数函数是单调递减,再判断其它选项错误,得到答案.【题目详解】A.,指数函数是单调递减函数,正确\B.反比例函数,在单调递减,在单调递减,但在上不单调,错误C.,在定义域内先减后增,错误D.,双勾函数,时先减后增,错误故答案选A【题目点拨】本题考查了函数的单调性,属于简单题.12、B【解题分析】试题分析:设,或,点的坐标为或考点:导数的几何意义二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
利用二项展开式的通项公式Tr+1中x的幂指数为0即可求得答案.【题目详解】,令=0,得:r=3,所以常数项为:=20,故答案为20.【题目点拨】本题考查二项式展开式中的特定项,利用其二项展开式的通项公式求得r=3是关键,考查运算能力,属于中档题.14、【解题分析】
由题意画出图形,结合三角形中的边角关系得答案.【题目详解】如图,由图可知,过点(1,0)并且与极轴垂直的直线方程是ρcosθ=1.故答案为.【题目点拨】本题考查了简单曲线的极坐标方程,是基础题.15、【解题分析】
前行用掉个自然数,由可判断2019所在行,即可确定其位置.【题目详解】因为前行用掉个自然数,而,
即2019在11行中,又第11行的第1个数为,
则2019为第11行的第个数,即第996个数,
即,,
故答案为:.【题目点拨】本题主要考查了归纳推理,等比数列求和,属于中档题.16、.【解题分析】
将所求事件分为两种情况:男女,男,这两个事件互斥,然后利用古典概型的概率公式和互斥事件的概率加法公式可求出所求事件的概率.【题目详解】事件“选出的人中男运动员比女运动员人数多”包含事件“男女”和事件“男”,由古典概型概率公式和互斥事件的概率加法公式可知,事件“选出的人中男运动员比女运动员人数多”的概率为,故答案为.【题目点拨】本题考查古典概型的概率公式和互斥事件的概率加法公式的应用,解题时要将所求事件进行分类讨论,结合相关公式进行计算,考查计算能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)乙生产线损失较多.(3)见解析【解题分析】
(1)利用对立事件概率公式可得;(2)根据二项分布的期望公式可得;(3)根据统计图得三个等级的概率,求出随机变量的分布列,利用公式求得期望.【题目详解】(1)由题意,知,解得.(2)由(1)知,甲生产线产品不合格率为,乙生产线产品不合格率为.设从甲、乙生产线各随机抽检件产品,抽到不合格品件数分别为和,则,,所以,甲、乙损失的平均数分别为,.所以,乙生产线损失较多.(3)由题意,知,,.因为,,,所以的分布列为所以,(元).所以,该产量为件时利润的期望值为元.【题目点拨】本题主要考查了离散型随机变量的分布列及数学期望的求解,对于求离散型随机变量概率分布列问题首先要清楚离散型随机变量的可能取值,计算得出概率,列出离散型随机变量概率分布列,最后由期望公式计算出数学期望,其中列出离散型随机变量概率分布列及计算数学期望是理科高考数学必考问题.18、(1)(2)【解题分析】
(1)先将表示为,然后利用裂项求和法可求出;(2)先求出数列的前项和,于是得出,然后利用作差法可求出数列的通项公式.【题目详解】(1)因为,所以;(2)因为,所以.当时.;当时,.故【题目点拨】本题考查裂项法求和以及作差法求数列的通项公式,求通项要结合递推式的结构选择合适的方法求数列通项,求和则需考查数列通项的结构合理选择合适的求和方法进行计算,属于常考题.19、(1)证明见解析;(2).【解题分析】
过D作平行线DH,则可得两两垂直,以它们为坐标轴建立空间直角坐标,求出长,写出的坐标.求出相应向量,(1)由,证得垂直;(2)求出平面的法向量,直线与平面所成角的正弦值等于向量和夹角余弦值的绝对值.由向量的数量积运算易求.【题目详解】(1)过D作平行线DH,以D为原点,DB为x轴,DC为y轴,为轴,建立空间坐标系,如图,在中,,,,,交于点,,;,,,;(2)由(1)可知,,,设平面BEF的法向量为,所以,,取,,设直线与平面所成角为,所以=.【题目点拨】本题考查证明空间两直线垂直,考查求直线与平面所成的角,解题方法是建立空间直角坐标系,由向量法证明线线垂直,求线面角,这种方法主要考查学生的运算求解能力,思维量很少,解法固定.20、(1);(2).【解题分析】
又,由此即可求出结果;(2)利用,和数量及的定义,代入得结果.【题目详解】解:又由问知.【题目点拨】本题考查平面向量的基本定理,和平面向量的数量积的运算公式及平面向量基本定理的应用.21、(1).(2).(3)【解题分析】
因为函数是R上的奇函数,令可求a;
对任意,总存在,使得成立,故只需满足值域是的值域的子集;
由不等式得,,构造利用单调性可求解正实数t的取值范围.【题目详解】(1)因为为上的奇函数,所以,即,解得得,当时,由得为奇函数,所以.(2)因为,且在上是减函数,在上为增函数所以在上的取值集合为.由,得是减函数,所以在上是减函数,所以在上的取值集合为.由“任意,总存在,使得成立”在上的取值集合是在上的取值集合的子集,即.则有,且,解得:.即实数的取值范围是.(3)记,则,所以是减函数,不等式等价于,即,因为是减函数,所以,解得,所以实数的取值范围是.【题目点拨】本题主要考查了函数最值的求法,通过子集的关系求参数的范围,构造函数求参数范围,属于难题.22、(1)见解析;(2)证明见解析【解题分析】
(1)讨论,和三种情况,分别计算得到答案.(2)根据题意知等价于,设,计算得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 按揭手房买卖协议书
- 灰土挤密桩施工承包合同
- 2025年南宁货运从业资格试题答案大全
- 2025年青海货运从业资格试题题库
- 2025年鹤岗b2货运资格证模拟考试
- 电工承包简单合同(2篇)
- 2024-2025学年四年级语文上册第二单元6天安门广场教案1苏教版
- 浙教版数学七年级上册《2.1 有理数的加法》听评课记录
- 七年级英语上册 Module 8 Choosing presents Unit 3 Language in use说课稿 (新版)外研版
- 2024-2025学年高中物理课时分层作业2库仑定律含解析教科版选修3-1
- 2024-2025学年第二学期学校全面工作计划
- 《中国传统文化》课件模板(六套)
- 2023年湖南高速铁路职业技术学院高职单招(数学)试题库含答案解析
- 中考语文非连续性文本阅读10篇专项练习及答案
- GB/T 13088-2006饲料中铬的测定
- 经颅磁刺激的基础知识及临床应用参考教学课件
- 小学语文人教四年级上册第四单元群文阅读“神话故事之人物形象”PPT
- 乡村振兴汇报课件
- 红色记忆模板课件
- 丽声三叶草分级读物第四级A Friend for Little White Rabbit课件
- DBJ61_T 179-2021 房屋建筑与市政基础设施工程专业人员配备标准
评论
0/150
提交评论