![2024届新疆维吾尔自治区巴音郭楞蒙古自治州和静高级中学数学高二下期末综合测试试题含解析_第1页](http://file4.renrendoc.com/view11/M00/10/3F/wKhkGWW-hVqAEJhyAAI8U9QEcbc228.jpg)
![2024届新疆维吾尔自治区巴音郭楞蒙古自治州和静高级中学数学高二下期末综合测试试题含解析_第2页](http://file4.renrendoc.com/view11/M00/10/3F/wKhkGWW-hVqAEJhyAAI8U9QEcbc2282.jpg)
![2024届新疆维吾尔自治区巴音郭楞蒙古自治州和静高级中学数学高二下期末综合测试试题含解析_第3页](http://file4.renrendoc.com/view11/M00/10/3F/wKhkGWW-hVqAEJhyAAI8U9QEcbc2283.jpg)
![2024届新疆维吾尔自治区巴音郭楞蒙古自治州和静高级中学数学高二下期末综合测试试题含解析_第4页](http://file4.renrendoc.com/view11/M00/10/3F/wKhkGWW-hVqAEJhyAAI8U9QEcbc2284.jpg)
![2024届新疆维吾尔自治区巴音郭楞蒙古自治州和静高级中学数学高二下期末综合测试试题含解析_第5页](http://file4.renrendoc.com/view11/M00/10/3F/wKhkGWW-hVqAEJhyAAI8U9QEcbc2285.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届新疆维吾尔自治区巴音郭楞蒙古自治州和静高级中学数学高二下期末综合测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.定义:复数与的乘积为复数的“旋转复数”.设复数对应的点在曲线上,则的“旋转复数”对应的点的轨迹方程为().A. B.C. D.2.已知函数,函数有四个不同的零点,从小到大依次为,,,,则的取值范围为()A. B. C. D.3.若函数至少有1个零点,则实数的取值范围是A. B. C. D.4.二项式(ax-36)3(a>0)的展开式的第二项的系数为A.3B.73C.3或73D.35.定义在上的函数,单调递增,,若对任意,存在,使得成立,则称是在上的“追逐函数”.若,则下列四个命题:①是在上的“追逐函数”;②若是在上的“追逐函数”,则;③是在上的“追逐函数”;④当时,存在,使得是在上的“追逐函数”.其中正确命题的个数为()A.①③ B.②④ C.①④ D.②③6.二项式的展开式的各项中,二项式系数最大的项为()A. B.和C.和 D.7.已知复数满足,则复数在复平面内对应的点为()A. B. C. D.8.已知命题,命题,若为假命题,则实数的取值范围是()A. B.或 C. D.9.平面与平面平行的条件可以是()A.内有无穷多条直线都与平行B.内的任何直线都与平行C.直线,直线,且D.直线,且直线不在平面内,也不在平面内10.已知函数,关于的方程有三个不等的实根,则的取值范围是()A. B.C. D.11.若命题“使”是假命题,则实数的取值范围为()A. B.C. D.12.如图,设区域,向区域内随机投一点,且投入到区域内任一点都是等可能的,则点落到由曲线与所围成阴影区域内的概率是()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.对于无理数,用表示与最接近的整数,如,.设,对于区间的无理数,定义,我们知道,若,和,则有以下两个恒等式成立:①;②,那么对于正整数和两个无理数,,以下两个等式依然成立的序号是______;①;②.14.已知定义在实数集上的偶函数在区间上是增函数.若存在实数,对任意的,都有,则正整数的最大值为__________.15.已知定义在上的函数的图象关于点对称,,若函数图象与函数图象的交点为,则_____.16.位老师和位同学站成一排合影,要求老师相邻且不在两端的排法有______种.(用数字作答)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,角的对边分别为,满足.(1)求角的大小(2)若,求的周长最大值.18.(12分)如图,点,,,分别为椭圆:的左、右顶点,下顶点和右焦点,直线过点,与椭圆交于点,已知当直线轴时,.(1)求椭圆的离心率;(2)若当点与重合时,点到椭圆的右准线的距离为上.①求椭圆的方程;②求面积的最大值.19.(12分)已知某单位甲、乙、丙三个部门共有员工60人,为调查他们的睡眠情况,通过分层抽样获得部分员工每天睡眠的时间,数据如下表(单位:小时)甲部门678乙部门5.566.577.58丙部门55.566.578.5(1)求该单位乙部门的员工人数?(2)从甲部门和乙部门抽出的员工中,各随机选取一人,甲部门选出的员工记为A,乙部门选出的员工记为B,假设所有员工睡眠的时间相互独立,求A的睡眠时间不少于B的睡眠时间的概率;(3)若将每天睡眠时间不少于7小时视为睡眠充足,现从丙部门抽出的员工中随机抽取3人做进一步的身体检查.用X表示抽取的3人中睡眠充足的员工人数,求随机变量X的分布列与数学期望.20.(12分)如图,在四棱锥中,四边形是直角梯形,,,,为等边三角形.(1)证明:;(2)求二面角的余弦值.21.(12分)(1)求方程的非负整数解的个数;(2)某火车站共设有4个“安检”入口,每个入口每次只能进1个旅客求—个小组4人进站的不同方案种数,要求写出计算过程.22.(10分)已知数列的前项和(1)求的通项公式;(2)若数列满足:,求的前项和(结果需化简)
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
设可得:.因为复数与的乘积为复数的“旋转复数,可得,的“旋转复数”对应的点,由坐标变换,即可得的“旋转复数”对应的点的轨迹方程.【题目详解】复数对应的点在曲线上设可得:复数与的乘积为复数的“旋转复数┄①设的“旋转复数”对应的点可得:即┄②将②代入①得:即:故选:C.【题目点拨】本题考查复数的运算,考查复平面和考查坐标变换,掌握复数与复平面内的点一一对应是解本题的关键.2、B【解题分析】分析:通过f(x)的单调性,画出f(x)的图象和直线y=a,考虑四个交点的情况,得到x1=-2-x2,-1<x2≤0,x3x4=4,再由二次函数的单调性,可得所求范围.详解:当x>0时,f(x)=,可得f(x)在x>2递增,在0<x<2处递减,
由f(x)=e
(x+1)2,x≤0,
x<-1时,f(x)递减;-1<x<0时,f(x)递增,
可得x=-1处取得极小值1,
作出f(x)的图象,以及直线y=a,
可得e
(x1+1)2=e
(x2+1)2=,即有x1+1+x2+1=0,可得x1=-2-x2,-1<x2≤0,可得x3x4=4,
x1x2+x3x4=4-2x2-x22=-(x2+1)2+5,在-1<x2≤0递减,
可得所求范围为[4,5).故选B.点睛:本题考查函数方程的转化思想,以及数形结合思想方法,考查二次函数的最值求法,化简整理的运算能力,属于中档题.3、C【解题分析】
令,则函数至少有1个零点等价于函数至少有1个零点,对函数求导,讨论和时,函数的单调性,以及最值的情况,即可求出满足题意的实数的取值范围。【题目详解】由题可得函数的定义域为;令,则,函数至少有1个零点等价于函数至少有1个零点;;(1)当时,则在上恒成立,即函数在单调递增,当时,,当时,,由零点定理可得当时,函数在有且只有一个零点,满足题意;(2)当时,令,解得:,令,解得:,则函数在上单调递增,在上单调递减,当时,,所以要使函数至少有1个零点,则,解得:综上所述:实数的取值范围是:故答案选C【题目点拨】本题主要考查利用导数研究函数的零点个数的问题,由导数研究函数的单调区间以及最值是解题的关键,属于中档题。4、A【解题分析】试题分析:∵展开式的第二项的系数为-32,∴C31a2(-当a=1时,-2a考点:二项式定理、积分的运算.5、B【解题分析】
由题意,分析每一个选项,首先判断单调性,以及,再假设是“追逐函数”,利用题目已知的性质,看是否满足,然后确定答案.【题目详解】对于①,可得,在是递增函数,,若是在上的“追逐函数”;则存在,使得成立,即,此时当k=100时,不存在,故①错误;对于②,若是在上的“追逐函数”,此时,解得,当时,,在是递增函数,若是“追逐函数”则,即,设函数即,则存在,所以②正确;对于③,在是递增函数,,若是在上的“追逐函数”;则存在,使得成立,即,当k=4时,就不存在,故③错误;对于④,当t=m=1时,就成立,验证如下:,在是递增函数,,若是在上的“追逐函数”;则存在,使得成立,即此时取即,故存在存在,所以④正确;故选B【题目点拨】本题主要考查了对新定义的理解、应用,函数的性质等,易错点是对新定义的理解不到位而不能将其转化为两函数的关系,实际上对新定义问题的求解通常是将其与已经学过的知识相结合或将其表述进行合理转化,从而更加直观,属于难题.6、C【解题分析】
先由二项式,确定其展开式各项的二项式系数为,进而可确定其最大值.【题目详解】因为二项式展开式的各项的二项式系数为,易知当或时,最大,即二项展开式中,二项式系数最大的为第三项和第四项.故第三项为;第四项为.故选C【题目点拨】本题主要考查二项式系数最大的项,熟记二项式定理即可,属于常考题型.7、A【解题分析】
利用复数除法运算,化简为的形式,由此求得对应的点的坐标.【题目详解】依题意,对应的点为,故选A.【题目点拨】本小题主要考查复数的除法运算,考查复数对应点的坐标,属于基础题.8、D【解题分析】试题分析:由,可得,由,可得,解得.因为为假命题,所以与都是假命题,若是假命题,则有,若是假命题,则由或,所以符合条件的实数的取值范围为,故选D.考点:命题真假的判定及应用.9、B【解题分析】
根据空间中平面与平面平行的判定方法,逐一分析题目中的四个结论,即可得到答案.【题目详解】平面α内有无数条直线与平面β平行时,两个平面可能平行也可能相交,故A不满足条件;平面α内的任何一条直线都与平面β平行,则能够保证平面α内有两条相交的直线与平面β平行,故B满足条件;直线a⊂α,直线b⊂β,且a∥β,b∥α,则两个平面可能平行也可能相交,故C不满足条件;直线a∥α,a∥β,且直线a不在α内,也不在β内,则α与β相交或平行,故D错误;故选B.【题目点拨】本题考查的知识点是空间中平面与平面平行的判定,熟练掌握面面平行的定义和判定方法是解答本题的关键.10、B【解题分析】
利用导数讨论函数的性质后可得方程至多有两个解.因为有三个不同的解,故方程有两个不同的解,且,,最后利用函数的图像特征可得实数的取值范围.【题目详解】,当时,,在上为增函数;当时,,在上为减函数;所以的图像如图所示:又时,,又的值域为,所以当或时,方程有一个解,当时,方程有两个不同的解,所以方程即有两个不同的解,令,故,解得,故选B.【题目点拨】复合方程的解的个数问题,其实质就是方程组的解的个数问题,后者可先利用导数等工具刻画的图像特征,结合原来方程解的个数得到的限制条件,再利用常见函数的性质刻画的图像特征从而得到参数的取值范围.11、B【解题分析】
若原命题为假,则否命题为真,根据否命题求的范围.【题目详解】由题得,原命题的否命题是“,使”,即,解得.选B.【题目点拨】本题考查原命题和否命题的真假关系,属于基础题.12、B【解题分析】试题分析:图中阴影面积可以用定积分计算求出,即,正方形OABC的面积为1,所以根据几何概型面积计算公式可知,点落到阴影区域内的概率为。考点:1.定积分的应用;2.几何概型。二、填空题:本题共4小题,每小题5分,共20分。13、①,②..【解题分析】
根据新定义,结合组合数公式,进行分类讨论即可.【题目详解】当时,由定义可知:,,当时,由定义可知:,,故①成立;当时,由定义可知:,,当时,由定义可知:,故②成立.故答案为:①,②.【题目点拨】本题考查了新定义题,考查了数学阅读能力,考查了组合数的计算公式,考查了分类讨论思想.14、【解题分析】分析:先根据单调性得对任意的都成立,再根据实数存在性得,即得,解得正整数的最大值.详解:因为偶函数在区间上是增函数,对任意的,都有,所以对任意的都成立,因为存在实数,所以即得,因为成立,,所以正整数的最大值为4.点睛:对于求不等式成立时的参数范围问题,一般有三个方法,一是分离参数法,使不等式一端是含有参数的式子,另一端是一个区间上具体的函数,通过对具体函数的研究确定含参式子满足的条件.二是讨论分析法,根据参数取值情况分类讨论,三是数形结合法,将不等式转化为两个函数,通过两个函数图像确定条件.15、4038.【解题分析】
由函数图象的对称性得:函数图象与函数图象的交点关于点对称,则,,即,得解.【题目详解】由知:得函数的图象关于点对称又函数的图象关于点对称则函数图象与函数图象的交点关于点对称则故,即本题正确结果:【题目点拨】本题考查利用函数图象的对称性来求值的问题,关键是能够根据函数解析式判断出函数的对称中心,属中档题.16、24【解题分析】
根据题意,分2步进行分析:第一步,将3位同学全排列,排好后中间有2个空位可用;第二步,将2位老师看成一个整体,安排在2个空位中,由分步计数原理计算可得答案.【题目详解】解:根据题意,分2步进行分析:第一步,将3位同学全排列,有种排法,排好后中间有2个空位可用;第二步,将2位老师看成一个整体,安排在2个空位中,有种安排方法.则有种排法.故答案为:24.【题目点拨】本题考查排列组合及简单的计数问题.对于不相邻的问题,一般采用插空法;对于相邻的问题,一般采用捆绑法.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)1【解题分析】试题分析:(1)由,根据正弦定理,得,可得,进而可得的值;(2)由(1)及正弦定理,得,可得的周长,,结合范围,即可求的最大值.试题解析:(1)由及正弦定理,得(2)解:由(I)得,由正弦定理得所以的周长当时,的周长取得最大值为1.18、(1)(2)①②【解题分析】分析:(1)先求当直线轴时,,再根据条件得,最后由解得离心率,(2)设直线为,,,,联立直线方程与椭圆方程,利用韦达定理化简,即得,令,利用基本不等式求最值,最后考虑特殊情形下三角形面积的值.详解:解:(1)在中,令可得,所以所以当直线轴时,又,所以所以,所以(2)①因为,所以,椭圆方程为当点与点重合时,点坐标为又,所以此时直线为由得又,所以所以椭圆方程为②设直线为由得即,恒成立设,则,所以令,则且,易知函数在上单调递增所以当时,即的面积的最大值为点睛:解析几何中的最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值的探求来使问题得以解决.19、(1)24人;(2);(3)X的分布列见解析;数学期望为1【解题分析】
(1)分层抽样共抽取:3+6+6=15名员工,其中该单位乙部门抽取6名员工,由此能求出该单位乙部门的员工人数.(2)基本事件总数n18,利用列举法求出A的睡眠时间不少于B的睡眠时间包含的基本事件个数,由此能求出A的睡眠时间不少于B的睡眠时间的概率.(3)X的可能取值为0,1,2,分别求出相应的概率,由此能求出X的分布列和数学期望E(X).【题目详解】(1)由题意,得到分层抽样共抽取:3+6+6=15名员工,其中该单位乙部门抽取6名员工,∴该单位乙部门的员工人数为:624人.(2)由题意甲部门抽取3名员工,乙部门抽取6名员工,从甲部门和乙部门抽出的员工中,各随机选取一人,基本事件总数n18,A的睡眠时间不少于B的睡眠时间包含的基本事件(a,b)有12个:(6,5.5),(6,6),(7,5.5),(7,6),(7,6.5),(7,7),(8,5.5),(8,6),(8,6.5),(8,7),(8,7.5),(8,8),∴A的睡眠时间不少于B的睡眠时间的概率p.(3)由题意从丙部门抽出的员工有6人,其中睡眠充足的员工人数有2人,从丙部门抽出的员工中随机抽取3人做进一步的身体检查.用X表示抽取的3人中睡眠充足的员工人数,则X的可能取值为0,1,2,P(X=0),P(X=1),P(X=2),∴X的分布列为:X012PE(X)1.【题目点拨】本题考查离散型随机变量的分布列、数学期望的求法,涉及到古典概型及分层抽样的基本知识,考查运算求解能力,是中档题.20、(1)略;(2)【解题分析】
(1)推导出,从而得到平面,由此可证得;(2)推导出,以B为原点为轴,为轴,为轴,建立空间直角坐标系,求得平面的法向量,利用向量的夹角公式,即可求解.【题目详解】(1)证明:在四棱锥中,四边形是直角梯形,,,,为等边三角形,所以,所以,,所以,又由,所以平面,又因为平面,所以;(2)因为,所以,以为原点为轴,为轴,为轴,建立空间直角坐标系,则,所以,设平面的法向量为,则,取,得,设平面的法向量为,则,取,得,由图形可知二面角的平面角是钝角,设二面角的平面角为,所以,即二面角的余弦值为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2031年中国闪蒸干燥器行业投资前景及策略咨询研究报告
- 2025至2031年中国记忆型条码扫描器行业投资前景及策略咨询研究报告
- 2025年硅胶自熄管项目可行性研究报告
- 2025年爽滑抗粘连母料项目可行性研究报告
- 2025至2031年中国洁白牙膏行业投资前景及策略咨询研究报告
- 2025年旋转式变阻器项目可行性研究报告
- 2025年强化安全转化器项目可行性研究报告
- 2025年地刮项目可行性研究报告
- 2025至2031年中国交联聚乙烯绝缘轻型架空电缆行业投资前景及策略咨询研究报告
- 2025年仓壁振动器项目可行性研究报告
- GB/T 7251.5-2017低压成套开关设备和控制设备第5部分:公用电网电力配电成套设备
- 2023年湖南高速铁路职业技术学院高职单招(数学)试题库含答案解析
- GB/T 13088-2006饲料中铬的测定
- 大学生返家乡志愿服务证明
- 经颅磁刺激的基础知识及临床应用参考教学课件
- 小学语文人教四年级上册第四单元群文阅读“神话故事之人物形象”PPT
- 乡村振兴汇报课件
- 红色记忆模板课件
- 丽声三叶草分级读物第四级A Friend for Little White Rabbit课件
- DBJ61_T 179-2021 房屋建筑与市政基础设施工程专业人员配备标准
- 三年级下册脱式计算题
评论
0/150
提交评论