版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
南阳市第一中学2024届高二数学第二学期期末教学质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在区间[0,2]上随机取两个数x,y,则xy∈[0,2]的概率是().A.1-ln22B.3-2ln2.若是互不相同的空间直线,是不重合的平面,则下列命题中真命题是()A.若则B.若则C.若,,则D.若,,则3.函数f(x)与它的导函数f'(x)的大致图象如图所示,设g(x)=f(x)exA.15 B.25 C.34.下列命题中,假命题是()A.不是有理数 B.C.方程没有实数根 D.等腰三角形不可能有的角5.已知函数与的图象上存在关于轴对称的点,则的取值范围是()A. B. C. D.6.“所有的倍数都是的倍数,某奇数是的倍数,故该奇数是的倍数.”上述推理()A.大前提错误 B.小前提错误C.结论错误 D.正确7.已知函数是(-∞,+∞)上的减函数,则a的取值范围是A.(0,3) B.(0,3] C.(0,2) D.(0,2]8.已知一组样本点,其中.根据最小二乘法求得的回归方程是,则下列说法正确的是()A.若所有样本点都在上,则变量间的相关系数为1B.至少有一个样本点落在回归直线上C.对所有的预报变量,的值一定与有误差D.若斜率,则变量与正相关9.下列函数中,在定义域内单调的是()A. B.C. D.10.已知函数,若在和处切线平行,则()A.B.C.D.11.从4种蔬菜品种中选出3种,分别种植在不同土质的3块土地上,不同的种植方法共有()A.12种 B.24种 C.36种 D.48种12.已知复数z满足,则z的共轭复数()A.i B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列{an}中,a1=1,an=an-1+(n≥2),则数列{an}的前9项和等于________.14.设随机变量的概率分布列如下图,则___________.123415.过抛物线的焦点作直线与该抛物线交于两点,过其中一交点向准线作垂线,垂足为,若是面积为的等边三角形,则__________.16.已知向量满足,,的夹角为,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)手机厂商推出一款6寸大屏手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行评分,评分的频数分布表如下:女性用户分值区间[50,60)[60,70)[70,80)[80,90)[90,100]频数2040805010男性用户分值区间[50,60)[60,70)[70,80)[80,90)[90,100]频数4575906030(1)完成下列频率分布直方图,并比较女性用户和男性用户评分的波动大小(不计算具体值,给出结论即可);(2)把评分不低于70分的用户称为“评分良好用户”,完成下列列联表,并判断能否有的把握认为“评分良好用户”与性别有关?女性用户男性用户合计“认可”手机“不认可”手机合计参考附表:参考公式,其中18.(12分)在有阳光时,一根长为3米的旗轩垂直于水平地面,它的影长为米,同时将一个半径为3米的球放在这块水平地面上,如图所示,求球的阴影部分的面积(结果用无理数表示).19.(12分)已知函数(其中).(1)当时,求不等式的解集;(2)若不等式对任意实数x恒成立,求实数m的取值范围.20.(12分)已知函数.(1)若在定义域上不单调,求的取值范围;(2)设分别是的极大值和极小值,且,求的取值范围.21.(12分)某单位共有员工45人,其中男员工27人,女员工18人.上级部门为了对该单位员工的工作业绩进行评估,采用按性别分层抽样的方法抽取5名员工进行考核.(1)求抽取的5人中男、女员工的人数分别是多少;(2)考核前,评估小组从抽取的5名员工中,随机选出3人进行访谈.求选出的3人中有1位男员工的概率;(3)考核分笔试和答辩两项.5名员工的笔试成绩分别为78,85,89,92,96;结合答辩情况,他们的考核成绩分别为95,88,102,106,99.这5名员工笔试成绩与考核成绩的方差分别记为,试比较与的大小.(只需写出结论)22.(10分)在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,,,以AC的中点O为球心,AC为直径的球面交PD于点M,交PC于点N.(1)求证:平面ABM⊥平面PCD;(2)求直线CD与平面ACM所成角的大小;(3)求点N到平面ACM的距离.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】试题分析:由题意所有的基本事件满足0≤x≤20≤y≤2,所研究的事件满足0≤y≤2x,画出可行域如图,总的区域面积是一个边长为2的正方形,其面积为4,满足0≤y≤2x的区域的面积为考点:几何概型2、C【解题分析】
对于A,考虑空间两直线的位置关系和面面平行的性质定理;对于B,考虑线面垂直的判定定理及面面垂直的性质定理;对于C,考虑面面垂直的判定定理;对于D,考虑空间两条直线的位置关系及平行公理.【题目详解】选项A中,除平行外,还有异面的位置关系,则A不正确;选项B中,与的位置关系有相交、平行、在内三种,则B不正确;选项C中,由,设经过的平面与相交,交线为,则,又,故,又,所以,则C正确;选项D中,与的位置关系还有相交和异面,则D不正确;故选C.【题目点拨】该题考查的是有关立体几何问题,涉及到的知识点有空间直线与平面的位置关系,面面平行的性质,线面垂直的判定,面面垂直的判定和性质,属于简单题目.3、B【解题分析】
结合图象可得到f'(x)-f(x)<0成立的x的取值范围,从而可得到g(x)【题目详解】由图象可知,y轴左侧上方图象为f'(x)的图象,下方图象为对g(x)求导,可得g'(x)=f'(x)-f(x)ex,结合图象可知x∈(0,1)和x∈(4,5)时,f'(x)-f(x)<0,即g(x)在0,1和【题目点拨】本题考查了函数的单调性问题,考查了数形结合的数学思想,考查了导数的应用,属于中档题.4、D【解题分析】
根据命题真假的定义,对各选项逐一判定即可.【题目详解】解:.为无理数,故正确,.,故正确,.因为,即方程没有实根,故正确,.等腰三角形可能以为顶角,为底角,故错误,故选:.【题目点拨】本题考查命题真假的判断,属于基础题.5、C【解题分析】
函数关于轴对称的解析式为,则它与在有交点,在同一坐标系中分别画出两个函数的图象,观察图象得到.【题目详解】函数关于轴对称的解析式为,函数,两个函数的图象如图所示:若过点时,得,但此时两函数图象的交点在轴上,所以要保证在轴的正半轴,两函数图象有交点,则的图象向右平移均存在交点,所以,故选C.【题目点拨】本题综合考查函数的性质及图象的平移问题,注意利用数形结合思想进行问题求解,能减少运算量.6、D【解题分析】
分析:要分析一个演绎推理是否正确,主要观察所给的大前提,小前提和结论是否都正确,根据三个方面都正确,得到结论.详解:∵所有9的倍数都是3的倍数,某奇数是9的倍数,故某奇数是3的倍数,大前提:所有9的倍数都是3的倍数,小前提:某奇数是9的倍数,结论:故某奇数是3的倍数,∴这个推理是正确的,故选D.点睛:该题考查的是有关演绎推理的定义问题,在解决问题的过程中,需要先分清大前提、小前提和结论分别是什么,之后结合定义以及对应的结论的正确性得出结果.7、D【解题分析】
由为上的减函数,根据和时,均单调递减,且,即可求解.【题目详解】因为函数为上的减函数,所以当时,递减,即,当时,递减,即,且,解得,综上可知实数的取值范围是,故选D.【题目点拨】本题主要靠考查了分段函数的单调性及其应用,其中熟练掌握分段的基本性质,列出相应的不等式关系式是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.8、D【解题分析】分析:样本点均在直线上,则变量间的相关系数,A错误;样本点可能都不在直线上,B错误;样本点可能在直线上,即预报变量对应的估计值可能与可以相等,C错误;相关系数与符号相同D正确.详解:选项A:所有样本点都在,则变量间的相关系数,相关系数可以为,故A错误.选项B:回归直线必过样本中心点,但样本点可能都不在回归直线上,故B错误.选项C:样本点可能在直线上,即可以存在预报变量对应的估计值与没有误差,故C错误.选项D:相关系数与符号相同,若斜率,则,样本点分布从左至右上升,变量与正相关,故D正确.点睛:本题考查线性回归分析的相关系数、样本点、回归直线、样本中心点等基本数据,基本概念的准确把握是解题关键.9、A【解题分析】
指数函数是单调递减,再判断其它选项错误,得到答案.【题目详解】A.,指数函数是单调递减函数,正确\B.反比例函数,在单调递减,在单调递减,但在上不单调,错误C.,在定义域内先减后增,错误D.,双勾函数,时先减后增,错误故答案选A【题目点拨】本题考查了函数的单调性,属于简单题.10、A【解题分析】
求出原函数的导函数,可得,得到,则,由x1≠x2,利用基本不等式求得x12+x22>1.【题目详解】由f(x)lnx,得f′(x)(x>0),∴,整理得:,则,∴,则,∴x1x2≥2,∵x1≠x2,∴x1x2>2.∴2x1x2=1.故选:A.【题目点拨】本题考查了利用导数研究曲线上某点的切线方程,训练了利用基本不等式求最值,是中档题.11、B【解题分析】
由分步计数原理计算可得答案.【题目详解】根据题意,分2步进行分析:①、先在4种蔬菜品种中选出3种,有种取法,②、将选出的3种蔬菜对应3块不同土质的土地,有种情况,则不同的种植方法有种;故选:B.【题目点拨】本题考查计数原理的运用,注意本题问题要先抽取,再排列.12、A【解题分析】
由条件求出z,可得复数z的共轭复数.【题目详解】∵z(1+i)=1﹣i,∴zi,∴z的共轭复数为i,故选A.【题目点拨】本题主要考查共轭复数的基本概念,两个复数代数形式的乘除法法则的应用,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、27【解题分析】数列{an}中,a1=1,an=an-1+(n≥2),则数列{an}为等差数列,首项为1,公差为,.14、【解题分析】
依题意可知,根据分布列计算可得;【题目详解】解:依题意可得故答案为:【题目点拨】本题考查离散型随机变量的分布列与和概率公式的应用,属于基础题.15、2.【解题分析】分析:根据是面积为的等边三角形,算出边长,及∠,得出p与边长的关系详解:是面积为的等边三角形即∠即p=2点晴:本题主要考察抛物线的定义及性质,在抛物线类的题目中,做题的过程中要抓住抛物线上一点到焦点的距离和到准线的距离相等的条件是做题的关键16、【解题分析】
先计算,再由展开计算即可得解.【题目详解】由,,的夹角为,得.所以.故答案为:.【题目点拨】本题主要考查了利用向量的数量积计算向量的模长,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)直方图见解析;女性用户的波动小,男性用户的波动大.(2)有的把握.【解题分析】
(1)利用频数分布表中所给数据求出各组的频率,利用频率除以组距得到纵坐标,从而可得频率分布直方图,由直方图观察女性用户和男性用户评分的集中与分散情况,即可比较波动大小;(2)利用公式求出,与临界值比较,即可得出结论.【题目详解】(1)女性用户和男性用户的频率分布直方图分别如下左、右图:由图可得女性用户的波动小,男性用户的波动大.(2)2×2列联表如下图:女性用户男性用户合计“认可”手机140180320“不认可”手机60120180合计200300500≈5.208>2.706,所以有的把握认为性别和对手机的“认可”有关.【题目点拨】本题考查频率分布直方图的作法及应用,考查独立性检验的应用,是中档题.高考试题对独立性检验的思想进行考查时,一般给出的计算公式,不要求记忆,近几年高考中较少单独考查独立性检验,多与统计知识、概率知识综合考查,频率分布表与独立性检验融合在一起是一种常见的考查形式,一般需要根据条件列出2×2列联表,计算的观测值,从而解决问题.18、6π(米2)【解题分析】
先求出射影角,再由射影比例求球的阴影部分的面积。【题目详解】解:由题意知,光线与地面成60°角,设球的阴影部分面积为S,垂直于光线的大圆面积为S′,则Scos30°=S′,并且S′=9π,所以S=6π(米2)【题目点拨】先求出射影角,再由射影比例求球的阴影部分的面积。19、(1)或;(2).【解题分析】
(1)当时,对分成三段,讨论绝对值内数的正负;(2)不等式恒成立问题,转化成解不等式问题.【题目详解】(1)当时,即.①当时,得:,解得:;②当时,得:,不成立,此时;③当时,得:成立,此时.综上所述,不等式的解集为或.(2)∵,由题意,即:或,解得:或,即:的取值范围是.【题目点拨】考查用零点分段法解绝对值不等式、三角不等式求绝对值函数的最小值.20、(1);(2).【解题分析】分析:(1)利用导数法求出函数单调递增或单调递减时,参数的取值范围为,则可知函数在定义域上不单调时,的取值范围为;(2)易知,设的两个根为,并表示出,则,令,则,再利用导数法求的取值范围.详解:由已知,(1)①若在定义域上单调递增,则,即在上恒成立,而,所以;②若在定义域上单调递减,则,即在上恒成立,而,所以.因为在定义域上不单调,所以,即.(2)由(1)知,欲使在有极大值和极小值,必须.又,所以.令的两根分别为,,即的两根分别为,,于是.不妨设,则在上单调递增,在上单调递减,在上单调递增,所以,,所以.令,于是,,由,得,又,所以.因为,所以在上为减函数,所以.点睛:导数问题一直是高考数学的重点内容也是难点内容,要注意研究函数的单调性,有时需要构造相关函数,将问题转化为求函数的值域问题,本题中的第一问,采用了“正难则反”的策略,简化了解题,在解决第二问换元时,要注意表明新元的取值范围.21、(1)男员工3人,女员工2人(2)(3)【解题分析】
(1)根据分层抽样等比例抽取的性质,列式计算即可;(2)分别计算5人中选出3人的全部可能性和3人中有1人为男员工的可能性,用古典概型概率计算公式即可求得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024养老产品定制与销售合作协议3篇
- 2024年度外籍员工劳动保护与职业健康安全合同3篇
- 2024年度共享停车项目地下停车位合作协议范本3篇
- 剖宫产手术的后期护理
- 2024年度特种货物国际运输保险合同规范范本3篇
- 2024年协议离婚风险评估与法律风险防范合同3篇
- 2024年度二级甲等医院眼科科室承包合作协议3篇
- 采购合同预付款的合同风险评估3篇
- 2024年度培训班转让合同范本:教育培训机构合作协议书15篇
- 采购合同要素解析攻略3篇
- 2023年药品流通行业运行统计分析报告
- 现代小说课件教学课件
- 2024年新课标培训2022年小学英语新课标学习培训课件
- 北京市西城区2022-2023学年高二上学期期末考试 化学试卷 附答案
- 2023-2024学年安徽省合肥市瑶海区八年级(上)期末数学试卷(含答案)
- 2018普通高中第十届化学趣味知识竞赛(含答案)
- 2023年心理学基础知识试题及答案
- 湖南省岳阳市2023-2024学年高三上学期教学质量监测(一)(一模) 英语 含解析
- 2024新信息科技三年级《第二单元 记录美好时光》大单元 第5课 美化处理图片(计划一课时) 教学设计2022课标
- 北师大版数学二年级上册100道口算题大全(全册 )
- 01SS105给排水常用仪表及特种阀门安装图集
评论
0/150
提交评论