版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届内蒙古鄂尔多斯市数学高二第二学期期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合M={x|(x-1)2<4,x∈R},N={-1,0,1,2,3},则M∩N=()A.{0,1,2} B.{-1,0,1,2} C.{-1,0,2,3} D.{0,1,2,3}2.定积分()A.1 B.2 C.3 D.43.函数y=x4-2x2+5的单调递减区间为()A.(-∞,-1]和[0,1] B.[-1,0]和[1,+∞)C.[-1,1] D.(-∞,-1]和[1,+∞)4.现有小麦、大豆、玉米、高粱种不同农作物供选择,在如图所示的四块土地上行种植,要求有公共边界的两块地不能种同一种农作物,则不同的种植方法共有()A.36种 B.48种 C.24种 D.30种5.(2017新课标全国卷Ⅲ文科)已知椭圆C:的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线相切,则C的离心率为A. B.C. D.6.已知某射击运动员,每次击中目标的概率都是0.8,则该射击运动员射击4次,至少击中3次的概率为()A.0.85 B.0.8192 C.0.8 D.0.757.中国古代数学著作《算法统宗》巾有这样一个问题:“三百七十八里关,初行健步不为难日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还”其大意为:“有人走了378里路,第一天健步行走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”问此人第4天和第5天共走了A.60里 B.48里 C.36里 D.24里8.随机变量,且,则()A.64 B.128 C.256 D.329.已知椭圆C:x225+y2m2=1 (m>0)的左、右焦点分别为FA.2 B.3 C.23 D.10.定义在R上的函数f(x)满足f(-x)=-f(x),f(x)=f(x+4),且x∈(-1,0)时,f(x)=2x+A.1B.45C.-1D.11.“,”的否定是A., B.,C., D.,12.某城市关系要好的,,,四个家庭各有两个小孩共人,分别乘甲、乙两辆汽车出去游玩,每车限坐名(乘同一辆车的名小孩不考虑位置),其中户家庭的孪生姐妹需乘同一辆车,则乘坐甲车的名小孩恰有名来自于同一个家庭的乘坐方式共有()A.种 B.种 C.种 D.种二、填空题:本题共4小题,每小题5分,共20分。13.若曲线与曲线在上存在公共点,则的取值范围为14.已知直线在矩阵对应的变换作用下变为直线:,则直线的方程为__________.15.在棱长为1的正方体中,点是对角线上的动点(点与不重合),则下列结论正确的是____.①存在点,使得平面平面;②存在点,使得平面;③的面积不可能等于;④若分别是在平面与平面的正投影的面积,则存在点,使得.16.样本中共有5个个体,其值分别为,0,1,2,1.则样本方差为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)小威初三参加某高中学校的数学自主招生考试,这次考试由十道选择题组成,得分要求是:做对一道题得1分,做错一道题扣去1分,不做得0分,总得分7分就算及格,小威的目标是至少得7分获得及格,在这次考试中,小威确定他做的前六题全对,记6分,而他做余下的四道题中,每道题做对的概率均为p,考试中,小威思量:从余下的四道题中再做一题并且及格的概率;从余下的四道题中恰做两道并且及格的概率,他发现,只做一道更容易及格.(1)设小威从余下的四道题中恰做三道并且及格的概率为,从余下的四道题中全做并且及格的概率为,求及;(2)由于p的大小影响,请你帮小威讨论:小威从余下的四道题中恰做几道并且及格的概率最大?18.(12分)如图,三棱柱中,平面平面,,.(Ⅰ)证明:;(Ⅱ)求直线与平面所成角的正弦值.19.(12分)互联网正在改变着人们的生活方式,在日常消费中手机支付正逐渐取代现金支付成为人们首选的支付方式.某学生在暑期社会活动中针对人们生活中的支付方式进行了调查研究.采用调查问卷的方式对100名18岁以上的成年人进行了研究,发现共有60人以手机支付作为自己的首选支付方式,在这60人中,45岁以下的占,在仍以现金作为首选支付方式的人中,45岁及以上的有30人.(1)从以现金作为首选支付方式的40人中,任意选取3人,求这3人至少有1人的年龄低于45岁的概率;(2)某商家为了鼓励人们使用手机支付,做出以下促销活动:凡是用手机支付的消费者,商品一律打八折.已知某商品原价50元,以上述调查的支付方式的频率作为消费者购买该商品的支付方式的概率,设销售每件商品的消费者的支付方式都是相互独立的,求销售10件该商品的销售额的数学期望.20.(12分)在平面直角坐标系中,曲线:,曲线:(为参数),以坐标原点为极点,轴正半轴为极轴,建立极坐标系.(1)求曲线,的极坐标方程;(2)曲线:(为参数,,),分别交,于,两点,当取何值时,取得最大值.21.(12分)已知复数满足:,且在复平面内对应的点位于第三象限.(I)求复数;(Ⅱ)设,且,求实数的值.22.(10分)(1)求关于的不等式的解集;(2)若关于的不等式在时恒成立,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】试题分析:求出集合M中不等式的解集,确定出M,找出M与N的公共元素,即可确定出两集合的交集.解:由(x﹣1)2<4,解得:﹣1<x<3,即M={x|﹣1<x<3},∵N={﹣1,0,1,2,3},∴M∩N={0,1,2}.故选A点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2、B【解题分析】
直接利用定积分公式计算得到答案.【题目详解】.故选:.【题目点拨】本题考查了定积分,意在考查学生的计算能力.3、A【解题分析】
对函数求导,研究导函数的正负,求使得导函数小于零的自变量的范围,进而得到单调区间.【题目详解】y′=4x3-4x=4x(x2-1),令y′<0,得单调递减区间为(-∞,-1),(0,1).故答案为A.【题目点拨】这个题目考查了利用导数求函数的单调区间,对函数求导,导函数大于0,解得函数单调增区间;导函数小于0得到函数的减区间;注意函数的单调区间一定要写成区间的形式.4、B【解题分析】
需要先给右边的一块地种植,有种结果,再给中间上面的一块地种植,有种结果,再给中间下面的一块地种植,有种结果,最后给左边的一块地种植,有种结果,相乘即可得到结果【题目详解】由题意可知,本题是一个分步计数的问题先给右边的一块地种植,有种结果再给中间上面的一块地种植,有种结果再给中间下面的一块地种植,有种结果最后给左边的一块地种植,有种结果根据分步计数原理可知共有种结果故选【题目点拨】本题主要考查的知识点是分步计数原理,这种问题解题的关键是看清题目中出现的结果,几个环节所包含的事件数在计算时要做到不重不漏。5、A【解题分析】以线段为直径的圆的圆心为坐标原点,半径为,圆的方程为,直线与圆相切,所以圆心到直线的距离等于半径,即,整理可得,即即,从而,则椭圆的离心率,故选A.【名师点睛】解决椭圆和双曲线的离心率的求值及取值范围问题,其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.6、B【解题分析】
因为某射击运动员,每次击中目标的概率都是,则该射击运动员射击4次看做4次独立重复试验,则至少击中3次的概率7、C【解题分析】
每天行走的里程数是公比为的等比数列,且前和为,故可求出数列的通项后可得.【题目详解】设每天行走的里程数为,则是公比为的等比数列,所以,故(里),所以(里),选C.【题目点拨】本题为数学文化题,注意根据题设把实际问题合理地转化为数学模型,这类问题往往是基础题.8、A【解题分析】
根据二项分布期望的计算公式列方程,由此求得的值,进而求得方差,然后利用方差的公式,求得的值.【题目详解】随机变量服从二项分布,且,所以,则,因此.故选A.【题目点拨】本小题主要考查二项分布期望和方差计算公式,属于基础题.9、D【解题分析】
由椭圆的定义知ΔPF1F2的周长为2a+2c=16,可求出c的值,再结合a、b、c的关系求出【题目详解】设椭圆C的长轴长为2a,焦距为2c,则2a=10,c=a由椭圆定义可知,ΔPF1F2的周长为∵m>0,解得m=4,故选:D。【题目点拨】本题考查椭圆的定义的应用,考查利用椭圆定义求椭圆的焦点三角形问题,在处理椭圆的焦点与椭圆上一点线段(焦半径)问题,一般要充分利用椭圆定义来求解,属于基础题。10、C【解题分析】试题分析:由于,因此函数为奇函数,,故函数的周期为4,,即,,,故答案为C考点:1、函数的奇偶性和周期性;2、对数的运算11、D【解题分析】
通过命题的否定的形式进行判断.【题目详解】因为全称命题的否定是特称命题,故“,”的否定是“,”.故选D.【题目点拨】本题考查全称命题的否定,属基础题.12、B【解题分析】若A户家庭的李生姐妹乘坐甲车,即剩下的两个小孩来自其他的2个家庭,有种方法.若A户家庭的李生姐妹乘坐乙车,那来自同一家庭的2名小孩来自剩下的3个家庭中的一个,有.所以共有12+12=24种方法.本题选择B选项.点睛:(1)解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组,注意各种分组类型中,不同分组方法的求法.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】试题分析:根据题意,函数与函数在上有公共点,令得:设则由得:当时,,函数在区间上是减函数,当时,,函数在区间上是增函数,所以当时,函数在上有最小值所以.考点:求参数的取值范围.14、【解题分析】分析:用相关点法求解,设直线上的点为直线上的点为,所以,,代入直线的方程详解:设直线上的点为直线上的点为,直线在矩阵对应的变换作用下所以:,代入直线的方程整理可得直线的方程为。点睛:理解矩阵的计算规则和相互之间的转换。15、①②④【解题分析】
逐项分析.【题目详解】①如图当是中点时,可知也是中点且,,,所以平面,所以,同理可知,且,所以平面,又平面,所以平面平面,故正确;②如图取靠近的一个三等分点记为,记,,因为,所以,所以为靠近的一个三等分点,则为中点,又为中点,所以,且,,,所以平面平面,且平面,所以平面,故正确;③如图作,在中根据等面积得:,根据对称性可知:,又,所以是等腰三角形,则,故错误;④如图设,在平面内的正投影为,在平面内的正投影为,所以,,当时,解得:,故正确.故填:①②④.【题目点拨】本题考查立体几何的综合问题,难度较难.对于判断是否存在满足垂直或者平行的位置关系,可通过对特殊位置进行分析得到结论,一般优先考虑中点、三等分点;同时计算线段上动点是否满足一些情况时,可以设动点和线段某一端点组成的线段与整个线段长度的比值为,然后统一未知数去分析问题.16、2【解题分析】
根据题中数据,求出平均值,再由方差计算公式,即可求出结果.【题目详解】因为,0,1,2,1这五个数的平均数为:,所以其方差为:.故答案为:.【题目点拨】本题主要考查计算几个数的方差,熟记公式即可,属于基础题型.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),.(2)时,恰做一道及格概率最大;时,;时,恰做三道及格概率最大.【解题分析】分析:(1)根据题意得到,;(2)根据题意得到选择概率较大的即可,分且,且,且三种情况.详解:(1),;(2)①且,∴;②且,;③且,无解;综上,时,恰做一道及格概率最大;时,;时,恰做三道及格概率最大.点睛:这个题目考查的是概率的计算以及多项式比较大小的应用,分类讨论的思想.。18、(Ⅰ)见解析;(Ⅱ)【解题分析】
(Ⅰ)如图做辅助线,D为AB中点,连,,由是等边三角形可知,,且,则是等边三角形,,故平面,平面,那么得证.(Ⅱ)建立空间直角坐标系以D为原点,先根据已知求平面的一个法向量,再求向量,设直线与平面所成的角为,则,计算即得.【题目详解】(Ⅰ)取中点,连,因为,所以,所以平面因为平面所以.(Ⅱ)以为坐标原点,建立如图所示的空间直角坐标系,可得,,,,设平面的一个法向量为则,而.所以.又,设直线与平面所成的角,则【题目点拨】本题考查两条直线的位置关系和立体几何中的向量方法,是常见考题.19、(1);(2)440【解题分析】
(1)先计算出选取的人中,全都是高于岁的概率,然后用减去这个概率,求得至少有人的年龄低于岁的概率.(2)首先确定“销售的10件商品中以手机支付为首选支付的商品件数”满足二项分布,求得销售额的表达式,然后利用期望计算公式,计算出销售额的期望.【题目详解】(1)设事件表示至少有1人的年龄低于45岁,则.(2)由题意知,以手机支付作为首选支付方式的概率为.设表示销售的10件商品中以手机支付为首选支付的商品件数,则,设表示销售额,则,所以销售额的数学期望(元).【题目点拨】本小题主要考查利用对立事件来计算古典概型概率问题,考查二项分布的识别和期望的计算,考查随机变量线性运算后的数学期望的计算.20、(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024工程项目协议条款与监管办法
- SaaS平台定制技术开发服务协议
- 2023-2024学年重庆市永川北山中学高三二轮检测试题(二模)数学试题试卷
- 2024定制出租车辆运营协议典范
- 2024年履约担保协议范本下载指南
- 2024锅炉维修工程协议格式
- 2024年度汽车租赁协议格式
- 2024商业秘密保护竞业限制协议样本
- 2024年仓库转租协议条款
- 动产资产抵押协议范例2024年
- 高考地理一轮复习课件【知识精讲+高效课堂】美食与地理环境关系
- 分居声明告知书范本
- 2023年04月山东济南市槐荫区残联公开招聘残疾人工作“一专两员”公开招聘笔试参考题库+答案解析
- 消失的13级台阶
- 营销管理知识点
- 船体强度与结构设计课程设计
- 不宁腿综合征诊断与治疗
- 初中英语教学活动设计
- 三写作的载体与受体
- GB/T 451.3-2002纸和纸板厚度的测定
- 网签授权书(学生就业平台)
评论
0/150
提交评论