版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省靖江市刘国钧中学数学高二下期末教学质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.集合,那么()A. B. C. D.2.2019年4月,北京世界园艺博览会开幕,为了保障园艺博览会安全顺利地进行,某部门将5个安保小组全部安排到指定的三个不同区域内值勤,则每个区域至少有一个安保小组的排法有()A.150种 B.240种 C.300种 D.360种3.设,,则()A. B.C. D.4.已知集合,,且,则实数的值是()A. B. C. D.5.凸10边形内对角线最多有()个交点A. B. C. D.6.已知命题p:,.则为().A., B.,C., D.,7.点A、B在以PC为直径的球O的表面上,且AB⊥BC,AB=2,BC=4,若球O的表面积是24π,则异面直线PB和AC所成角余弦值为()A.33 B.32 C.108.已知定圆,,定点,动圆满足与外切且与内切,则的最大值为()A. B. C. D.9.等比数列的前n项和,前2n项和,前3n项的和分别为A,B,C,则A. B.C. D.10.倾斜角为的直线经过抛物线:的焦点,且与抛物线交于,两点(点,分别位于轴的左、右两侧),,则的值是()A. B. C. D.11.已知i为虚数单位,z,则复数z的虚部为()A.﹣2i B.2i C.2 D.﹣212.设集合,,,则图中阴影部分所表示的集合是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在的二项式中,常数项等于_______(结果用数值表示).14.在平面直角坐标系中,已知点是椭圆:上第一象限的点,为坐标原点,,分别为椭圆的右顶点和上顶点,则四边形的面积的最大值为__________.15.已知甲、乙、丙3名运动员击中目标的概率分别为,,,若他们3人分别向目标各发1枪,则三枪中至少命中2次的概率为______.16.设,若随机变量的分布列是:则当变化时,的极大值是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)平面直角坐标系xOy中,抛物线的焦点为F,过F的动直线l交于M、N两点.(1)若l垂直于x轴,且线段MN的长为1,求的方程;(2)若,求线段MN的中点P的轨迹方程;(3)求的取值范围.18.(12分)已知命题:实数满足(其中),命题:实数满足(1)若,且与都为真命题,求实数的取值范围;(2)若是的必要不充分条件,求实数的取值范围.19.(12分)已知椭圆的左焦点为,右顶点为,上顶点为,,(为坐标原点).(1)求椭圆的方程;(2)定义:曲线在点处的切线方程为.若抛物线上存在点(不与原点重合)处的切线交椭圆于、两点,线段的中点为.直线与过点且平行于轴的直线的交点为,证明:点必在定直线上.20.(12分)某理科考生参加自主招生面试,从7道题中(4道理科题3道文科题)不放回地依次任取3道作答.(1)求该考生在第一次抽到理科题的条件下,第二次和第三次均抽到文科题的概率;(2)规定理科考生需作答两道理科题和一道文科题,该考生答对理科题的概率均为,答对文科题的概率均为,若每题答对得10分,否则得零分.现该生已抽到三道题(两理一文),求其所得总分的分布列与数学期望.21.(12分)已知函数,若定义域内存在实数x,满足,则称为“局部奇函数.(1)已知二次函数,试判断是否为“局部奇函数”?并说明理由(2)设是定义在上的“局部奇函数”,求实数m的取值范围.22.(10分)大型综艺节目《最强大脑》中,有一个游戏叫做盲拧魔方,就是玩家先观察魔方状态并进行记忆,记住后蒙住眼睛快速还原魔方,盲拧在外人看来很神奇,其实原理是十分简单的,要学会盲拧也是很容易的.根据调查显示,是否喜欢盲拧魔方与性别有关.为了验证这个结论,某兴趣小组随机抽取了50名魔方爱好者进行调查,得到的情况如下表所示:喜欢盲拧不喜欢盲拧总计男22▲30女▲12▲总计▲▲50表1并邀请这30名男生参加盲拧三阶魔方比赛,其完成情况如下表所示:成功完成时间(分钟)[0,10)[10,20)[20,30)[30,40]人数101055表2(1)将表1补充完整,并判断能否在犯错误的概率不超过0.025的前提下认为是否喜欢盲拧与性别有关?(2)根据表2中的数据,求这30名男生成功完成盲拧的平均时间(同一组中的数据用该组区间的中点值代替);(3)现从表2中成功完成时间在[0,10)内的10名男生中任意抽取3人对他们的盲拧情况进行视频记录,记成功完成时间在[0,10)内的甲、乙、丙3人中被抽到的人数为,求的分布列及数学期望.附参考公式及数据:,其中.0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
把两个集合的解集表示在数轴上,可得集合A与B的并集.【题目详解】把集合A和集合B中的解集表示在数轴上,如图所示,则A∪B={x|-2<x<3}故选A.【题目点拨】本题考查学生理解并集的定义掌握并集的运算法则,灵活运用数形结合的数学思想解决数学问题,属基础题.2、A【解题分析】
根据题意,需要将5个安保小组分成三组,分析可得有2种分组方法:按照1、1、3分组或按照1、2、2分组,求出每一种情况的分组方法数目,由加法计数原理计算可得答案.【题目详解】根据题意,三个区域至少有一个安保小组,所以可以把5个安保小组分成三组,有两种分法:按照1、1、3分组或按照1、2、2分组;若按照1、1、3分组,共有种分组方法;若按照1、2、2分组,共有种分组方法,根据分类计数原理知共有60+90=150种分组方法.故选:A.【题目点拨】本题考查排列、组合及简单计数问题,本题属于分组再分配问题,根据题意分析可分组方法进行分组再分配,按照分类计数原理相加即可,属于简单题.3、A【解题分析】
根据对数函数的单调性可得,,根据不等式的性质可知;通过比较与1的大小关系,即可判断,从而可选出正确答案.【题目详解】解:,,则,故选:A.【题目点拨】本题主要考查了对数的运算,对数函数的单调性.在比较对数的大小时,常常结合对数函数的单调性比较大小.对于,若,则(1)当时,;(2)当时,;(3)当时,;若,则(1)当时,;(2)当时,;(3)当时,.4、B【解题分析】
根据已知,将选项代入验证即可.【题目详解】由,知且,经检验符合题意,所以.故选:B【题目点拨】本题考查集合间的关系,要注意特殊方法的应用,减少计算量,属于基础题.5、D【解题分析】
根据凸边形内对角线最多有个交点的公式求得.【题目详解】凸边形内对角线最多有个交点,又,故选D.【题目点拨】本题考查凸边形内对角线最多有个交点的公式,属于中档题.6、C【解题分析】
因为特称命题的否定是全称命题,即改变量词又否定结论,所以p:,的否定:.故选C.7、C【解题分析】
首先作出图形,计算出球的半径,通过几何图形,找出异面直线PB和AC所成角,通过余弦定理即可得到答案.【题目详解】设球O的半径为R,则4πR2=24π,故R=6,如图所示:分别取PA,PB,BC的中点M,N,E,连接MN,NE,ME,AE,易知,PA⊥平面ABC,由于AB⊥BC,所以AC=AB2+BC2=25,所以PA=PC2-AC2=2,因为E为BC的中点,则AE=AB2+BE2=2cos∠MNE=MN2+NE2-M【题目点拨】本题主要考查外接球的相关计算,异面直线所成角的计算.意在考查学生的空间想象能力,计算能力和转化能力,难度较大.8、A【解题分析】
将动圆的轨迹方程表示出来:,利用椭圆的性质将距离转化,最后利用距离关系得到最值.【题目详解】定圆,,动圆满足与外切且与内切设动圆半径为,则表示椭圆,轨迹方程为:故答案选A【题目点拨】本题考查了轨迹方程,椭圆的性质,利用椭圆性质变换长度关系是解题的关键.9、D【解题分析】分析:由等比数列的性质,可知其第一个项和,第二个项和,第三个项和仍然构成等比数列,化简即可得结果.详解:由等比数列的性质可知,等比数列的第一个项和,第二个项和,第三个项和仍然构成等比数列,则有构成等比数列,,即,,故选D.点睛:本题考查了等比数列的性质,考查了等比数列前项和,意在考查灵活运用所学知识解决问题的能力,是基础题.10、D【解题分析】
设,则,由抛物线的定义,得,,进而可求BE、AE,最后由可求解.【题目详解】设,则A、B两点到准线的距离分别为AC、BD,由抛物线的定义可知:,过A作,垂足为E..故选:D【题目点拨】本题考查了抛物线的定义,考查了转化思想,属于中档题.11、C【解题分析】
根据复数的运算法则,化简得,即可得到复数的虚部,得到答案.【题目详解】由题意,复数,所以复数的虚部为,故选C.【题目点拨】本题主要考查了复数的概念,以及复数的除法运算,其中解答中熟记复数的运算法则是解答的关键,着重考查了推理与运算能力,属于基础题.12、A【解题分析】
阴影部分所表示的集合为:.【题目详解】由已知可得,阴影部分所表示的集合为:.故选:A.【题目点拨】本题主要考查集合的运算,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13、140【解题分析】
写出二项展开式的通项,由的指数为0求得r值,则答案可求.【题目详解】由得由6-3r=0,得r=1.
∴常数项等于,故答案为140.【题目点拨】本题考查了二项式系数的性质,关键是对二项展开式通项的记忆与运用,是基础题.14、【解题分析】分析:的面积的最大值当到直线距离最远的时候取得。详解:,当到直线距离最远的时候取得的最大值,设直线,所以,故的最大值为。点睛:分析题意,找到面积随到直线距离的改变而改变,建立面积与到直线距离的函数表达式,利用椭圆的参数方程求解距离的最值。本题还可以用几何法分析与直线平行的直线与椭圆相切时,为切点,到直线距离最大。15、【解题分析】
设事件A表示“甲命中”,事件B表示“乙命中”,事件C表示“丙命中”,则,,,他们3人分别向目标各发1枪,则三枪中至少命中2次的概率为:,由此能求出结果.【题目详解】解:设事件A表示“甲命中”,事件B表示“乙命中”,事件C表示“丙命中”,则,,,他们3人分别向目标各发1枪,则三枪中至少命中2次的概率为:.故答案为.【题目点拨】本题考查概率的求法,考查相互独立事件概率乘法公式等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.16、【解题分析】分析:先求出,再求,利用二次函数的图像求的极大值.详解:由题得,所以所以当时,的极大值是.故答案为:.点睛:(1)本题主要考查离散型随机变量的方差的计算,意在考查学生对这些知识的掌握水平和基本的计算能力.(2)对于离散型随机变量,如果它所有可能取的值是,,…,,…,且取这些值的概率分别是,,…,,那么=++…+三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)【解题分析】
(1)由题意,(,±)在抛物线上,代入可求出p,问题得一解决,(2)利用点差法和中点坐标公式和点斜式方程即可求出,(3)抛物线Γ:y2=2px(p>0),设l:xmy,M(x1,y1),y1>0,N(x2,y2),y2<0根据根系数的关系和两角和的正切公式,化简整理即可求出.【题目详解】解:(1)由题意,(,±)在抛物线上,代入可求出p,∴Γ的方程为y2=x,(2)抛物线Γ:y2=4x,设M(x1,y1),N(x2,y2),P(x0,y0)∴,∴(y1+y2)(y1﹣y2)=4(x1+x2),∴k,于是l为y﹣y0(x﹣x0),又l过点F(1,0),∴﹣y0(1﹣x0),即y02=2(x0﹣1),故线段MN的中点P的轨迹方程为y2=2(x﹣1)(3)抛物线Γ:y2=2px(p>0),设l:xmy,M(x1,y1),y1>0,N(x2,y2),y2<0,则y2﹣2my﹣p2=0,∴y1+y2=2mp,y1y2=﹣p2,则tan∠MON=tan(∠MOF+∠NOF),,,,,,故tan∠MON的取值范围是(﹣∞,]【题目点拨】本题考查抛物线与直线的位置关系的应用,考查转化思想以及计算能力,属于中档题.18、(1);(2).【解题分析】
记命题:,命题:(1)当时,求出,,根据与均为真命题,即可求出的范围;(2)求出,,通过是的必要不充分条件,得出,建立不等式组,求解即可.【题目详解】记命题:,命题:(1)当时,,,与均为真命题,则,的取值范围是.(2),,是的必要不充分条件,集合,,解得,综上所述,的取值范围是.【题目点拨】1.命题真假的判断(1)真命题的判断方法:真命题的判定过程实际就是利用命题的条件,结合正确的逻辑推理方法进行正确地逻辑推理的一个过程,判断命题为真的关键是弄清命题的条件,选择正确的逻辑推理方法.(2)假命题的判断方法:通过构造一个反例否定命题的正确性,这是判断一个命题为假命题的常用方法.(3)一些命题的真假也可以依据客观事实作出判断.2.从逻辑关系上看,若,但,则是的充分不必要条件;若,但,则是的必要不充分条件;若,且,则是的充要条件;若,且,则是的既不充分也不必要条件.19、(1);(2)见解析.【解题分析】
(1)由得出,再由得出,求出、的值,从而得出椭圆的标准方程;(2)设点的坐标为,根据中定义得出直线的方程,并设点、,,将直线的方程与椭圆的方程联立,列出韦达定理,利用中点坐标公式求出点的坐标,得出直线的方程与的方程联立,求出点的坐标,可得出点所在的定直线的方程.【题目详解】(1)由,可知,即.,,,可得,联立.得,则,所以,所以椭圆的方程为;(2)设点,则由定义可知,过抛物线上任一点处的切线方程为,所以.设、,.联立方程组,消去,得.由,得,解得.因为,所以,从而,所以,所以直线的方程为.而过点且平行于轴的直线方程为,联立方程,解得,所以点在定直线上.【题目点拨】本题考查椭圆方程的求解,以及直线与抛物线、直线与椭圆的综合问题,解题的关键在于利用题中的定义写出切线方程,并将直线方程与椭圆方程联立,利用韦达定理设而不求法进行求解,考查方程思想的应用,属于难题.20、(1);(2)的分布列为
【解题分析】试题解析:(1)记“该考生在第一次抽到理科题”为事件,“该考生第二次和第三次均抽到文科题”为事件,则所以该考生在第一次抽到理科题的条件下,第二次和第三次均抽到文科题的概率为(2)的可能取值为0,10,20,30,则所以的分布列为0102030所以,的数学期望21、(1)答案见解析;(2)【解题分析】试题分析:(1)本题实质就是解方程,如果这个方程有实数解,就说明是“局部奇函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房屋买卖合同上诉状样本
- 承包合同书范本
- 购销合同的签订注意事项解析
- 保安服务终止合同概述
- 居间科技咨询合同
- 劳动合同补充协议范本写作指南
- 投资合同风险规避
- 计件工劳动合同的违约权益
- 墙体涂装油漆分包合同模板
- 环保设备安装及运营维护合同
- 蓝色卡通幼儿园关爱眼睛主题班会
- 农产品质量安全培训(完整版)
- 护士值班及交接班制度测试卷附答案
- 音乐剧猫赏析课件
- 上海市普陀区2021-2022学年八年级上学期期末语文试题
- 护士求职应聘幻灯片课件
- 制药工程导论课件
- 某1000MW凝汽式汽轮机机组热力系统设计毕业设计(论文)
- 心律失常的药物治疗
- 商业银行派生存款的过程课件
- 国开作业《管理学基础》管理实训:第一章访问一个工商企业或一位管理者参考(含答案)981
评论
0/150
提交评论