![2024届海南省儋州第一中学数学高二下期末联考模拟试题含解析2_第1页](http://file4.renrendoc.com/view10/M03/2E/37/wKhkGWW74DyAPuSMAAKGZgrbP9A685.jpg)
![2024届海南省儋州第一中学数学高二下期末联考模拟试题含解析2_第2页](http://file4.renrendoc.com/view10/M03/2E/37/wKhkGWW74DyAPuSMAAKGZgrbP9A6852.jpg)
![2024届海南省儋州第一中学数学高二下期末联考模拟试题含解析2_第3页](http://file4.renrendoc.com/view10/M03/2E/37/wKhkGWW74DyAPuSMAAKGZgrbP9A6853.jpg)
![2024届海南省儋州第一中学数学高二下期末联考模拟试题含解析2_第4页](http://file4.renrendoc.com/view10/M03/2E/37/wKhkGWW74DyAPuSMAAKGZgrbP9A6854.jpg)
![2024届海南省儋州第一中学数学高二下期末联考模拟试题含解析2_第5页](http://file4.renrendoc.com/view10/M03/2E/37/wKhkGWW74DyAPuSMAAKGZgrbP9A6855.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届海南省儋州第一中学数学高二下期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.己知某物体的温度θ(单位:摄氏度)随时间t(单位:分钟)的变化规律是θ=m·2t+(t≥0,m>0),若物体的温度总不低于2摄氏度,则实数m的取值范围是()A.[,+∞) B.[,+∞) C.[,+∞) D.(1,+∞]2.已知变量,满足约束条件,则目标函数的最大值为A.7 B.8 C.9 D.103.设等差数列{}的前项和为,若,则=A.20 B.35 C.45 D.904.连掷两次骰子得到的点数分别为和,记向量与向量的夹角为,则的概率是()A. B. C. D.5.具有线性相关关系的变量,,满足一组数据如表所示,与的回归直线方程为,则的值为()A. B. C. D.6.在中,若,,,则的外接圆半径,将此结论拓展到空间,可得出的正确结论是:在四面体中,若、、两两互相垂直,,,,则四面体的外接球半径()A. B. C. D.7.设向量与,且,则()A. B. C. D.8.若当时,函数取得最大值,则()A. B. C. D.9.若函数的图象与的图象都关于直线对称,则与的值分别为()A. B. C. D.10.在正四面体中,点,分别在棱,上,若且,,则四面体的体积为()A. B. C. D.11.函数的图象大致为A. B. C. D.12.已知某超市为顾客提供四种结账方式:现金、支付宝、微信、银联卡.若顾客甲没有银联卡,顾客乙只带了现金,顾客丙、丁用哪种方式结账都可以,这四名顾客购物后,恰好用了其中的三种结账方式,那么他们结账方式的可能情况有()种A.19 B.7 C.26 D.12二、填空题:本题共4小题,每小题5分,共20分。13.若三角形内切圆半径为r,三边长为a,b,c,则,利用类比思想:若四面体内切球半径为R,四个面的面积为,则四面体的体积________.14.若,则整数__________.15.设曲线在点处的切线方程_________________.16.在的展开式中常数项是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,平面平面,,,,,,.(Ⅰ)求证:平面;(Ⅱ)求直线与平面所成角的正弦值.18.(12分)小威初三参加某高中学校的数学自主招生考试,这次考试由十道选择题组成,得分要求是:做对一道题得1分,做错一道题扣去1分,不做得0分,总得分7分就算及格,小威的目标是至少得7分获得及格,在这次考试中,小威确定他做的前六题全对,记6分,而他做余下的四道题中,每道题做对的概率均为p,考试中,小威思量:从余下的四道题中再做一题并且及格的概率;从余下的四道题中恰做两道并且及格的概率,他发现,只做一道更容易及格.(1)设小威从余下的四道题中恰做三道并且及格的概率为,从余下的四道题中全做并且及格的概率为,求及;(2)由于p的大小影响,请你帮小威讨论:小威从余下的四道题中恰做几道并且及格的概率最大?19.(12分)夏天喝冷饮料已成为年轻人的时尚.某饮品店购进某种品牌冷饮料若干瓶,再保鲜.(Ⅰ)饮品成本由进价成本和可变成本(运输、保鲜等其它费用)组成.根据统计,“可变成本”(元)与饮品数量(瓶)有关系.与之间对应数据如下表:饮品数量(瓶)24568可变成本(元)34445依据表中的数据,用最小二乘法求出关于的线性回归方程;如果该店购入20瓶该品牌冷饮料,估计“可变成本”约为多少元?(Ⅱ)该饮品店以每瓶10元的价格购入该品牌冷饮料若干瓶,再以每瓶15元的价格卖给顾客。如果当天前8小时卖不完,则通过促销以每瓶5元的价格卖给顾客(根据经验,当天能够把剩余冷饮料都低价处理完毕,且处理完毕后,当天不再购进).该店统计了去年同期100天该饮料在每天的前8小时内的销售量(单位:瓶),制成如下表:每日前8个小时销售量(单位:瓶)15161718192021频数10151616151315若以100天记录的频率作为每日前8小时销售量发生的概率,若当天购进18瓶,求当天利润的期望值.(注:利润=销售额购入成本“可变本成”)参考公式:回归直线方程为,其中参考数据:,.20.(12分)选修4-5:不等式选讲.(1)当时,求函数的最大值;(2)若对任意恒成立,求实数的取值范围.21.(12分)如图,在四棱锥中,平面,底面是菱形,,,,分别是棱的中点.(1)证明:平面;(2)求二面角的余弦值.22.(10分)如图,在三棱锥P-ABC中,,O是AC的中点,,,.(1)证明:平面平面ABC;(2)若,,D是AB的中点,求二面角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
直接利用基本不等式求解即可.【题目详解】由基本不等式可知,,当且仅当“m•2t=21﹣t”时取等号,由题意有,,即,解得.故选:C.【题目点拨】本题考查基本不等式的运用,注意等号成立的条件,属于基础题.2、C【解题分析】
由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数即可得答案.【题目详解】作出可行域如图,联立,解得,化目标函数为,由图可知,当直线过时,有最大值为9,故选.【题目点拨】本题主要考查简单的线性规划问题的解法。3、C【解题分析】
利用等差数列的前n项和的性质得到S9=,直接求解.【题目详解】∵等差数列{an}的前n项和为Sn,a4+a6=10,∴S9=故选:C.【题目点拨】这个题目考查的是数列求和的常用方法;数列通项的求法中有:直接根据等差等比数列公式求和;已知和的关系,求表达式,一般是写出做差得通项,但是这种方法需要检验n=1时通项公式是否适用;数列求和常用法有:错位相减,裂项求和,分组求和等。4、C【解题分析】
由,得出,计算出基本事件的总数以及事件所包含的基本事件数,然后利用古典概型的概率公式可计算出所求事件的概率.【题目详解】,,即,事件“”所包含的基本事件有:、、、、、、、、、、、、、、、、、、、、,共个,所有的基本事件数为,因此,事件“”的概率为.故选:C.【题目点拨】本题考查利用古典概型的概率公式计算事件的概率,解题的关键就是求出总的基本事件数和所求事件所包含的基本事件数,考查计算能力,属于中等题.5、A【解题分析】
将数据的中心点计算出来,代入回归方程,计算得到答案.【题目详解】中心点为:代入回归方程故答案选A【题目点拨】本题考查了回归方程过中心点的知识,意在考查学生的计算能力.6、A【解题分析】
四面体中,三条棱、、两两互相垂直,则可以把该四面体补成长方体,长方体的外接球就是四面体的外接球,则半径易求.【题目详解】四面体中,三条棱、、两两互相垂直,则可以把该四面体补成长方体,,,是一个顶点处的三条棱长.所以外接球的直径就是长方体的体对角线,则半径.故选A.【题目点拨】本题考查空间几何体的结构,多面体的外接球问题,合情推理.由平面类比到立体,结论不易直接得出时,需要从推理方法上进行类比,用平面类似的方法在空间中进行推理论证,才能避免直接类比得到错误结论.7、B【解题分析】
利用列方程,解方程求得的值,进而求得的值.【题目详解】由于,所以,即,而,故,故选B.【题目点拨】本小题主要考查向量数量积的坐标运算,考查二倍角公式,考查特殊角的三角函数值,属于基础题.8、B【解题分析】
函数解析式提取5变形后,利用两角和与差的正弦函数公式化为一个角的正弦函数,利用正弦函数的性质可得结果.【题目详解】,其中,当,即时,取得最大值5,,则,故选B.【题目点拨】此题考查了两角和与差的正弦函数公式、辅助角公式的应用,以及正弦函数最值,熟练掌握公式是解本题的关键.9、D【解题分析】分析:由题意得,结合即可求出,同理可得的值.详解:函数的图象与的图象都关于直线对称,和()解得和,和时,;时,.故选:D.点睛:本题主要考查了三角函数的性质应用,属基础题.10、C【解题分析】
由题意画出图形,设,,,由余弦定理得到关于,,的方程组,求解可得,的值,然后分别求出三角形的面积及A到平面的高,代入棱锥体积公式得答案.【题目详解】如图,设,,,∵,,∴由余弦定理得,①②③③-①得,,即,∵,则,代入③,得,又,得,,∴.∴A到平面PEF的距离.∴,故选C.【题目点拨】本题考查棱柱、棱锥、棱台体积的求法,考查数形结合的解题思想方法,考查计算能力,是中档题.11、C【解题分析】函数f(x)=()cosx,当x=时,是函数的一个零点,属于排除A,B,当x∈(0,1)时,cosx>0,<0,函数f(x)=()cosx<0,函数的图象在x轴下方.排除D.故答案为C。12、C【解题分析】
由题意,根据甲丙丁的支付方式进行分类,根据分类计数原理即可求出.【题目详解】顾客甲没有银联卡,顾客乙只带了现金,顾客丙、丁用哪种方式结账都可以,
①当甲丙丁顾客都不选微信时,则甲有2种选择,当甲选择现金时,其余2人种,
当甲选择支付宝时,丙丁可以都选银联卡,或者其中一人选择银联卡,另一人只能选支付宝或现金,故有,故有2+5=7种,
②当甲丙丁顾客都不选支付宝时,则甲有2种选择,当甲选择现金时,其余2人种,
当甲选择微信时,丙丁可以都选银联卡,或者其中一人选择银联卡,另一人只能选微信或现金,故有,故有2+5=7种,
③当甲丙丁顾客都不选银联卡时,若有人使用现金,则,若没有人使用现金,则有种,故有6+6=12种,根据分步计数原理可得共有7+7+6+6=26种,
故选C.【题目点拨】本题考查了分步计数原理和分类计数原理,考查了转化思想,属于难题.二、填空题:本题共4小题,每小题5分,共20分。13、.【解题分析】试题分析:由题意得三角形的面积可拆分成分别由三条边为底,其内切圆半径为高的三个小三角形的面积之和,从而可得公式,由类比思想得,四面体的体积亦可拆分成由四个面为底,其内切圆的半径为高的四个三棱锥的体积之和,从而可得计算公式.考点:1.合情推理;2.简单组合体的体积(多面体内切球).【方法点晴】此题主要考查合情推理在立体几何中的运用方面的内容,属于中低档题,根据题目前半段的“分割法”求三角形面积的推理模式,即以三角形的三条边为底、其内切圆半径为高分割成三个三角形面积之和,类似地将四面体以四个面为底面、其内切球半径为高分割成四个三棱锥(四面体)体积之和,从而问题可得解决.14、2【解题分析】
由题得,再解方程即得解.【题目详解】由题得,所以,所以,所以.故答案为:2【题目点拨】本题主要考查组合数的性质,考查组合方程的解法,意在考查学生对这些知识的理解掌握水平.15、【解题分析】
求出函数的导函数,得到函数在处的导数,即为切线的斜率,由直线方程的点斜式得答案.【题目详解】由题意,函数的导数为,可得曲线在点处的切线斜率为,即切线的斜率为,则曲线在点处的切线方程为,即为,即.故答案为:.【题目点拨】本题主要考查了利用导数研究曲线上某点的切线方程,其中解答中明确曲线上某点处的切线的斜率等于函数在该点处的导数值是解答的关键,着重考查了推理与运算能力,属于基础题.16、14【解题分析】,令,则展开式中得常数项为.【题目点拨】本题考查二项式定理,利用通项公式求二项展开式中的指定项.根据通项公式,根据所求项的要求,解出,再给出所求答案.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)见解析;(Ⅱ).【解题分析】分析:(1)先证明,,再证明平面.(2)利用向量方法求直线与平面所成角的正弦值.详解:(Ⅰ)因为,平面平面,,所以平面,所以,又因为,所以平面;(Ⅱ)取的中点,连结,,因为,所以.又因为平面,平面平面,所以平面.因为平面,所以.因为,所以.如图建立空间直角坐标系,由题意得,,,,,.设平面的法向量为,则,即,令,则,.所以.又,所以.所以直线与平面所成角的正弦值为.点睛:(1)本题主要考查线面位置关系的证明,考查直线和平面所成的角的求法,意在考查学生对这些知识的掌握水平和空间想象转化能力.(2)直线和平面所成的角的求法方法一:(几何法)找作(定义法)证(定义)指求(解三角形),其关键是找到直线在,平面内的射影作出直线和平面所成的角和解三角形.方法二:(向量法),其中是直线的方向向量,是平面的法向量,是直线和平面所成的角.18、(1),.(2)时,恰做一道及格概率最大;时,;时,恰做三道及格概率最大.【解题分析】分析:(1)根据题意得到,;(2)根据题意得到选择概率较大的即可,分且,且,且三种情况.详解:(1),;(2)①且,∴;②且,;③且,无解;综上,时,恰做一道及格概率最大;时,;时,恰做三道及格概率最大.点睛:这个题目考查的是概率的计算以及多项式比较大小的应用,分类讨论的思想.。19、(Ⅰ),可变成本”约为元;(Ⅱ)利润的期望值为元【解题分析】
(Ⅰ)将关于之间对应的数据代入最小二乘法公式求出与,可得出回归直线方程,再将代入回归直线方程可得出“可变成本”的值;(Ⅱ)根据利润公式分别算出当销量分别为瓶、瓶、瓶、瓶时的利润和频率,列出利润随机变量的分布列,结合分布列计算出数学期望值,即可得出答案。【题目详解】(Ⅰ),,,,,,所以关于的线性回归方程为:当时,,所以该店购入20瓶该品牌冷饮料,估计“可变成本”约为元;(Ⅱ)当天购进18瓶这种冷饮料,用表示当天的利润(单位:元),当销售量为15瓶时,利润,;当销售量为16瓶时,利润,;当销售量为17瓶时,利润,;当销售量为18瓶时,利润,;那么的分布列为:52.162.172.182.1的数学期望是:,所以若当天购进18瓶,则当天利润的期望值为元.【题目点拨】本题考查回归直线方程以及随机变量的分布列与数学期望,在求解随机变量分布列时,关键要弄清楚随机变量所服从的分布类型,掌握各分布类型的特点,考查分析问题能力与计算能力,属于中等题。20、(1)4(2)【解题分析】分析:(1)利用绝对值三角不等式求函数的最大值.(2)先求,再解不等式即得实数的取值范围.详解:(1)当时,,由,故,所以,当时,取得最大值,且为.(2)对任意恒成立,即为,即即有,即为或,所以的取值范围是.点睛:(1)本题主要考查绝对值三角不等式和不等式的恒成立,意在考查学生对这些知识的掌握水平和分析推理能力.(2)重要绝对值不等式:,使用这个不等式可以求绝对值函数的最值,先要确定是使用左边还是右边,如果两个绝对值中间是“-”号,就用左边,如果两个绝对值中间是“+”号,就使用右边.再确定中间的“±”号,不管是“+”还是“-”,总之要使中间是常数.21、(1)见解析(2)【解题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国墙布行业市场集中度、企业竞争格局分析报告-智研咨询发布
- 2025年01月上半年铜川市事业单位公开招聘带编入伍高校毕业生(3人)笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 《轻化工程基础》课件
- 大学生创新创业教程(慕课版 双色版 第3版) 课件汇 卢晓慧 第1-5章 创新与创新能力 - 创业机会发掘与团队组建
- 《社会行为说课》课件
- 《etf基金如何套利》课件
- 2025至2031年中国喷油器锻件行业投资前景及策略咨询研究报告
- 《季风环流》课件
- 2025至2030年中国铝喷塑封头数据监测研究报告
- 《风险收益原理》课件
- 空气动力学数值方法:有限元法(FEM):边界条件处理与应用
- 2024-2025年高中化学 第1章 第3节 第1课时 电离能及其变化规律教案 鲁科版选修3
- 无锡商业职业技术学院双高建设申报书
- 重大事故隐患判定标准与相关事故案例培训课件
- 2024年秋新北师大版七年级上册数学教学课件 3.1.1 代数式
- 全过程工程咨询管理服务方案
- NB-T10342-2019水电站调节保证设计导则
- 《麻风病防治知识》课件
- 经典诵读演讲稿6篇
- 乡村医生返聘协议书
- 2024机械买卖协议
评论
0/150
提交评论