2024届黑龙江省青冈县一中高二数学第二学期期末综合测试模拟试题含解析_第1页
2024届黑龙江省青冈县一中高二数学第二学期期末综合测试模拟试题含解析_第2页
2024届黑龙江省青冈县一中高二数学第二学期期末综合测试模拟试题含解析_第3页
2024届黑龙江省青冈县一中高二数学第二学期期末综合测试模拟试题含解析_第4页
2024届黑龙江省青冈县一中高二数学第二学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届黑龙江省青冈县一中高二数学第二学期期末综合测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知p:函数有两个零点,q:,.若为真,为假,则实数m的取值范围为A. B.C. D.2.在底面为正方形的四棱锥中,平面,,则异面直线与所成的角是()A. B. C. D.3.二项式展开式中,的系数是(

)A. B. C.

D.4.某快递公司共有人,从周一到周日的七天中,每天安排一人送货,每人至少送货天,其不同的排法共有()种.A. B. C. D.5.对四组数据进行统计,获得如图所示的散点图,关于其相关系数的比较,正确的是()A.r2<r4<0<r3<r1 B.r4<r2<0<r1<r3C.r4<r2<0<r3<r1 D.r2<r4<0<r1<r36.已知a>b,则下列不等式一定正确的是()A.ac2>bc2 B.a2>b2 C.a3>b3 D.7.若某程序框图如图所示,则该程序运行后输出的值是()A. B. C. D.8.已知复数,则复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.设函数满足:,,则时,()A.有极大值,无极小值 B.有极小值,无极大值C.既有极大值,又有极小值 D.既无极大值,又无极小值10.将曲线按变换后的曲线的参数方程为()A. B. C. D.11.在区间上的最大值是()A. B. C. D.12.若函数在区间上的图象如图所示,则的值()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.复数其中i为虚数单位,则z的实部是________________.14.已知复数,其中是虚数单位,则复数的实部为______.15.已知三棱锥A﹣BCD的顶点都在球O的表面上,且AB⊥BC,BC⊥CD,AB⊥CD,若AB=1,BC,CD,则球O的表面积为_____.16.为贯彻教育部关于全面推进素质教育的精神,某学校推行体育选修课.甲、乙、丙、丁四个人分别从太极拳、足球、击剑、游泳四门课程中选择一门课程作为选修课,他们分别有以下要求:甲:我不选太极拳和足球;乙:我不选太极拳和游泳;丙:我的要求和乙一样;丁:如果乙不选足球,我就不选太极拳.已知每门课程都有人选择,且都满足四个人的要求,那么选击剑的是___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)把编号为1、2、3、4、5的小球,放入编号为1、2、3、4、5的盒子中.(1)恰有两球与盒子号码相同;(2)球、盒号码都不相同,问各有多少种不同的方法18.(12分)英语老师要求学生从星期一到星期四每天学习3个英语单词:每周五对一周内所学单词随机抽取若干个进行检测(一周所学的单词每个被抽到的可能性相同)(1)英语老师随机抽了个单词进行检测,求至少有个是后两天学习过的单词的概率;(2)某学生对后两天所学过的单词每个能默写对的概率为,对前两天所学过的单词每个能默写对的概率为,若老师从后三天所学单词中各抽取一个进行检测,求该学生能默写对的单词的个数的分布列和期望.19.(12分)已知函数.(1)若,证明:当时,;当时,;(2)若是的极大值点,求.20.(12分)已知函数(1)设的最大值为,求的最小值;(2)在(1)的条件下,若,且,求的最大值.21.(12分)在直角坐标系中,斜率为k的动直线l过点,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为.(1)若直线l与曲线C有两个交点,求这两个交点的中点P的轨迹关于参数k的参数方程;(2)在条件(1)下,求曲线的长度.22.(10分)(1)化简:;(2)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于的偶数可以表示为两个素数的和”,如,在不超过的素数中,随机选取两个不同的数,其和等于的概率是多少?

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】

由p∨q为真,p∧q为假,知p,q有一个真命题一个假命题,由p得△=m1-4>0,解得m>1或m<-1.由q,得△=16(m-1)1-16<0,解得1<m<3,分两种情况求出实数m的取值范围.解答:解:∵p∨q为真,p∧q为假∴p,q中一个真命题一个假命题,由p:函数f(x)=x1+mx+1有两个零点,得△=m1-4>0,解得m>1或m<-1.由q:x∈R,4x1+4(m-1)x+1>0得△=16(m-1)1-16<0,解得1<m<3,当p真q假时,有即m≥3或m<-1当p假q真,有即1<m≤1∴实数m的取值范围为(-∞,-1)∪(1,1]∪[3,+∞).故选B.2、B【解题分析】

底面ABCD为正方形,PA⊥平面ABCD,分别过P,D点作AD,AP的平行线交于M,连接CM,AM,因为PB∥CM,所以就是异面直线PB与AC所成的角.【题目详解】解:由题意:底面ABCD为正方形,PA⊥平面ABCD,分别过P,D点作AD,AP的平行线交于M,连接CM,AM,

.

∴PBCM是平行四边形,

∴PB∥CM,

所以∠ACM就是异面直线PB与AC所成的角.

设PA=AB=,在三角形ACM中,

∴三角形ACM是等边三角形.

所以∠ACM等于60°,即异面直线PB与AC所成的角为60°.

故选:B.【题目点拨】本题考查了两条异面直线所成的角的证明及求法.属于基础题.3、B【解题分析】通项公式:,令,解得,的系数为,故选B.【方法点晴】本题主要考查二项展开式定理的通项与系数,属于简单题.二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.4、C【解题分析】分析:把天分成天组,然后人各选一组值班即可.详解:天分成天,天,天组,人各选一组值班,共有种,故选C.点睛:本题主要考查分组与分配问题问题,着重考查分步乘法计数原理,意在考查综合运用所学知识解决实际问题的能力,属于中档题.5、A【解题分析】

根据正相关和负相关以及相关系数的知识,选出正确选项.【题目详解】由散点图可知图(1)与图(3)是正相关,故r1>0,r3>0,图(2)与图(4)是负相关,故r2<0,r4<0,且图(1)与图(2)的样本点集中在一条直线附近,因此r2<r4<0<r3<r1.故选:A.【题目点拨】本小题主要考查散点图,考查相关系数、正相关和负相关的理解,属于基础题.6、C【解题分析】

分别找到特例,说明A,B,D三个选项不成立,从而得到答案.【题目详解】因为,所以当时,得到,故A项错误;当,得到,故B项错误;当时,满足,但,故D项错误;所以正确答案为C项.【题目点拨】本题考查不等式的性质,通过列举反例,排除法得到答案,属于简单题.7、C【解题分析】

运行程序,当时退出程序,输出的值.【题目详解】运行程序,,判断否,,判断否,,……,以此类推,,判断是,退出循环,输出,故选C.【题目点拨】本小题主要考查计算循环结构程序框图输出的结果,属于基础题.8、D【解题分析】

根据复数的运算法则,化简复数,再利用复数的表示,即可判定,得到答案.【题目详解】由题意,复数,所以复数对应的点位于第四象限.故选D.【题目点拨】本题主要考查了复数的除法运算,以及复数的表示,其中解答中熟记复数的运算法则,准确化简复数为代数形式是解答的关键,着重考查了推理与运算能力,属于基础题.9、B【解题分析】

首先构造函数,由已知得,从而有,令,求得,这样可确定是增函数,由可得的正负,确定的单调性与极值.【题目详解】,令,则,所以,令,则,即,当时,,单调递增,而,所以当时,,,单调递减;当时,,,单调递增;故有极小值,无极大值,故选B.【题目点拨】本题考查用导数研究函数的极值,解题关键是构造新函数,,求导后表示出,然后再一次令,确定单调性,确定正负,得出结论.10、D【解题分析】由变换:可得:,代入曲线可得:,即为:令(θ为参数)即可得出参数方程.故选D.11、D【解题分析】

对求导,判断函数在区间上的单调性,即可求出最大值。【题目详解】所以在单调递增,在单调递减,故选D【题目点拨】本题考查利用导函数求函数的最值,属于基础题。12、A【解题分析】

根据周期求,根据最值点坐标求【题目详解】因为,因为时,所以因为,所以,选A.【题目点拨】本题考查由图像求三角函数解析式,考查基本分析求解能力,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13、5【解题分析】试题分析:.故答案应填:5【考点】复数概念【名师点睛】本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如,其次要熟悉复数的相关概念,如复数的实部为,虚部为,模为,共轭为14、【解题分析】

根据模长公式求出,即可求解.【题目详解】,复数的实部为.故答案为:.【题目点拨】本题考查复数的基本概念以及模长公式,属于基础题.15、6π.【解题分析】

根据题意画出图形,结合图形把三棱锥补充为长方体,则该长方体的外接球为三棱锥的外接球,计算长方体的对角线长,求出外接球的直径,利用球的表面积公式,即可求解.【题目详解】如图所示,以和为棱,把三棱锥补成一个长方体,则该长方体的长宽高分别为,此时长方体的外接球即为三棱锥的外接球,且长方体的对角线长为,即,即,所以外接球的表面积为.【题目点拨】本题主要考查了多面体的外接球的表面积的计算,其中解答中以和为棱,把三棱锥补成一个长方体,此时长方体的外接球即为三棱锥的外接球是解答本题的关键,着重考查了推理与运算能力,属于中档试题.16、丙【解题分析】

列出表格,用√表示已选的,用×表示未选的课程,逐个将每门课程所选的人确定下来,即可得知选击剑的人是谁。【题目详解】在如下图中,用√表示该门课程被选择,用×表示该门课程未选,且每行每列只有一个勾,太极拳足球击剑游泳甲××√乙×√②×丙×√×丁√①从上述四个人的要求中知,太极拳甲、乙、丙都不选择,则丁选择太极拳,丁所说的命题正确,其逆否命题为“我选太极拳,那么乙选足球”为真,则选足球的是乙,由于乙、丙、丁都为选择游泳,那么甲选择游泳,最后只有丙选择击剑。故答案为:丙。【题目点拨】本题考查合情推理,充分利用假设法去进行论证,考查推理论证能力,属于中等题。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)20;(2)44.【解题分析】

(1)由题意结合排列组合公式和乘法原理即可求得恰有两球与盒子号码相同的种数;(2)利用全错位排列的递推关系式可得球、盒号码都不相同的方法种数.【题目详解】(1)易知3个球、盒号码都不相同共有2种情况,则恰有两球与盒子号码相同的排列方法种数为:种;(2)利用全错位排列的递推关系式:可得:,即球、盒号码都不相同共有44种方法.【题目点拨】本题主要考查排列组合公式的应用,全错位排列的递推关系式等知识,意在考查学生的转化能力和计算求解能力.18、(1);(2).【解题分析】

(I)根据古典概型概率公式求解,(Ⅱ)先确定随机变量,再分别求对应概率,列表得分布列,最后根据数学期望公式得结果.【题目详解】(Ⅰ)设英语老师抽到的4个单词中,至少含有个后两天学过的事件为,则由题意可得(Ⅱ)由题意可得ξ可取0,1,2,3,则有,,所以的分布列为:0123故.【题目点拨】求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率和公式、独立事件的概率积公式,以及对立事件的概率公式等),求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求.19、(1)见解析(2)【解题分析】分析:(1)求导,利用函数单调性证明即可.(2)分类讨论和,构造函数,讨论的性质即可得到a的范围.详解:(1)当时,,.设函数,则.当时,;当时,.故当时,,且仅当时,,从而,且仅当时,.所以在单调递增.又,故当时,;当时,.(2)(i)若,由(1)知,当时,,这与是的极大值点矛盾.(ii)若,设函数.由于当时,,故与符号相同.又,故是的极大值点当且仅当是的极大值点..如果,则当,且时,,故不是的极大值点.如果,则存在根,故当,且时,,所以不是的极大值点.如果,则.则当时,;当时,.所以是的极大值点,从而是的极大值点综上,.点睛:本题考查函数与导数的综合应用,利用函数的单调性求出最值证明不等式,第二问分类讨论和,当时构造函数时关键,讨论函数的性质,本题难度较大.20、(1)(2)2【解题分析】

运用不等式性质求出最小值根据不等式求最大值【题目详解】(1)∵,∴(当且仅当时取“=”号)∴(2)∵(当且仅当时取“=”号),(当且仅当时取“=”号)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论