2024届江苏省泰兴市实验初中高二数学第二学期期末复习检测模拟试题含解析_第1页
2024届江苏省泰兴市实验初中高二数学第二学期期末复习检测模拟试题含解析_第2页
2024届江苏省泰兴市实验初中高二数学第二学期期末复习检测模拟试题含解析_第3页
2024届江苏省泰兴市实验初中高二数学第二学期期末复习检测模拟试题含解析_第4页
2024届江苏省泰兴市实验初中高二数学第二学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省泰兴市实验初中高二数学第二学期期末复习检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知分别为内角的对边,且成等比数列,且,则=()A. B. C. D.2.设集合,若,则()A.1 B. C. D.-13.已知随机变量服从正态分布,且,则()A. B. C. D.4.在平面直角坐标系中,曲线(为参数)上的点到直线的距离的最大值为()A. B. C. D.5.已知点为抛物线:的焦点.若过点的直线交抛物线于,两点,交该抛物线的准线于点,且,,则()A. B.0 C.1 D.26.掷两颗均匀的骰子,则点数之和为5的概率等于()A. B. C. D.7.已知,分别为双曲线:的左,右焦点,点是右支上一点,若,且,则的离心率为()A. B.4 C.5 D.8.对相关系数,下列说法正确的是()A.越大,线性相关程度越大B.越小,线性相关程度越大C.越大,线性相关程度越小,越接近0,线性相关程度越大D.且越接近1,线性相关程度越大,越接近0,线性相关程度越小9.将函数的图象向左平移个单位长度后得到函数的图象,则的最小值为()A. B. C. D.10.已知中,,,,点是边的中点,则等于()A.1 B.2 C.3 D.411.已知a,b∈R,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.已知n,,,下面哪一个等式是恒成立的()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若不等式有且只有1个正整数解,则实数a的取值范围是______.14.已知函数是定义在上的偶函数,且满足,当时,,则方程的实根个数为____________.15.已知抛物线:,点是它的焦点,对于过点且与抛物线有两个不同公共点,的任一直线都有,则实数的取值范围是______.16.幂函数在上为增函数,则实数的值为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行横道时,应当减速慢行;遇行人正在通过人行横道,应当停车让行,俗称“礼让斑马线”,《中华人民共和国道路交通安全法》第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员不“礼让斑马线”行为统计数据:月份12345违章驾驶员人数1201051009085(Ⅰ)请利用所给数据求违章人数与月份之间的回归直线方程并预测该路口7月份的不“礼让斑马线”违章驾驶员人数;(Ⅱ)交警从这5个月内通过该路口的驾驶员中随机抽查了50人,调查驾驶员不“礼让斑马线”行为与驾龄的关系,得到如下列联表:不礼让斑马线礼让斑马线合计驾龄不超过1年22830驾龄1年以上81220合计302050能否据此判断有97.5%的把握认为“礼让斑马线”行为与驾龄有关?参考公式:,,(其中)0.1500.1000.0500.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82818.(12分)已知集合.(1)若,求实数的值;(2)若,求实数的取值范围.19.(12分)已知函数.(1)当,求函数的单调区间;(2)若函数在上是减函数,求的最小值;(3)证明:当时,.20.(12分)某小区所有263户家庭人口数分组表示如下:家庭人口数12345678910家庭数20294850463619843(1)若将上述家庭人口数的263个数据分布记作,平均值记作,写出人口数方差的计算公式(只要计算公式,不必计算结果);(2)写出他们家庭人口数的中位数(直接给出结果即可);(3)计算家庭人口数的平均数与标准差.(写出公式,再利用计算器计算,精确到0.01)21.(12分)某企业有甲、乙两套设备生产同一种产品,为了检测两套设备的生产质量情况,随机从两套设备生产的大量产品中各抽取了50件产品作为样本,检测一项质量指标值,若该项质量指标值落在内,则为合格品,否则为不合格品.表1是甲套设备的样本的频数分布表,图1是乙套设备的样本的频率分布直方图.表1:甲套设备的样本的频数分布表质量指标值[95,100)[100,105)[105,110)[110,115)[115,120)[120,125]频数14192051图1:乙套设备的样本的频率分布直方图(1)填写下面列联表,并根据列联表判断是否有90%的把握认为该企业生产的这种产品的质量指标值与甲、乙两套设备的选择有关;甲套设备乙套设备合计合格品不合格品合计(2)根据表1和图1,对两套设备的优劣进行比较;(3)将频率视为概率.若从甲套设备生产的大量产品中,随机抽取3件产品,记抽到的不合格品的个数为,求的期望.附:P(K2≥k0)0.150.100.0500.0250.010k02.0722.7063.8415.0246.635.22.(10分)在件产品中,有件正品,件次品,从这件产品中任意抽取件.(1)共有多少种不同的抽法?(2)抽出的件中恰有件次品的抽法有多少种?(3)抽出的件中至少有件次品的抽法有多少种?

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】因为成等比数列,所以,利用正弦定理化简得:,又,所以原式=所以选C.点睛:此题考察正弦定理的应用,要注意求角度问题时尽量将边的条件转化为角的等式,然后根据三角函数间的关系及三角形内角和的关系进行解题.2、A【解题分析】

由得且,把代入二次方程求得,最后对的值进行检验.【题目详解】因为,所以且,所以,解得.当时,,显然,所以成立,故选A.【题目点拨】本题考查集合的交运算,注意求出参数的值后要记得检验.3、B【解题分析】

先计算出,由正态密度曲线的对称性得出,于是得出可得出答案.【题目详解】由题可知,,由于,所以,,因此,,故选B.【题目点拨】本题考查正态分布在指定区间上的概率,考查正态密度曲线的对称性,解题时要注意正态密度曲线的对称轴,利用对称性来计算,考查运算求解能力,属于基础题.4、B【解题分析】

将直线,化为直角方程,根据点到直线距离公式列等量关系,再根据三角函数有界性求最值.【题目详解】可得:根据点到直线距离公式,可得上的点到直线的距离为【题目点拨】本题考查点到直线距离公式以及三角函数有界性,考查基本分析求解能力,属中档题.5、B【解题分析】

将长度利用相似转换为坐标关系,联立直线和抛物线方程,利用韦达定理求得答案.【题目详解】易知:焦点坐标为,设直线方程为:如图利用和相似得到:,【题目点拨】本题考查了抛物线与直线的关系,相似,意在考查学生的计算能力.6、B【解题分析】

试题分析:掷两颗均匀的骰子,共有36种基本事件,点数之和为5的事件有(1,4),(2,3),(3,2),(4,1)这四种,因此所求概率为,选B.考点:概率问题7、C【解题分析】

在中,求出,,然后利用双曲线的定义列式求解.【题目详解】在中,因为,所以,,,则由双曲线的定义可得所以离心率,故选C.【题目点拨】本题考查双曲线的定义和离心率,解题的关键是求出,,属于一般题.8、D【解题分析】

根据两个变量之间的相关系数r的基本特征,直接选出正确答案即可.【题目详解】用相关系数r可以衡量两个变量之间的相关关系的强弱,|r|≤1,r的绝对值越接近于1,表示两个变量的线性相关性越强,r的绝对值接近于0时,表示两个变量之间几乎不存在相关关系,故选D.【题目点拨】本题考查两个变量之间相关系数的基本概念应用问题,是基础题目.9、C【解题分析】

根据题意得到变换后的函数解析式,利用诱导公式求得结果【题目详解】由题,向左平移不改变周期,故,平移得到,,当时,,故选C【题目点拨】本题考查函数的图象变换规律,利用诱导公式完成正、余弦型函数的转化10、B【解题分析】

利用正弦定理求出的值,用基底表示,,则可以得到的值.【题目详解】解:在中,由正弦定理得,,即,解得,因为,,所以故选B.【题目点拨】本题考查了正弦定理、向量分解、向量数量积等问题,解题的关键是要将目标向量转化为基向量,从而求解问题.11、A【解题分析】

根据复数的基本运算,结合充分条件和必要条件的定义进行判断即可.【题目详解】解:因为,若,则等式成立,即充分性成立,若成立,即,所以解得或即必要性不成立,则“”是“”的充分不必要条件,故选:A.【题目点拨】本题主要考查充分条件和必要条件的判断,结合复数的基本运算是解决本题的关键,属于基础题.12、B【解题分析】

利用排列数、组合数公式以及组合数的性质可对各选项中的等式的正误进行判断.【题目详解】由组合数的定义可知,A选项错误;由排列数的定义可知,B选项正确;由组合数的性质可知,则C、D选项均错误.故选B.【题目点拨】本题考查排列数、组合数的定义以及组合数的性质的应用,意在考查对这些公式与性质的理解应用,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

令(),求出,由导数研究函数的单调性,可得唯一的正整数解是什么,从而得出的范围.【题目详解】令(),则.当时,由得;由得;所以在单调递增,在单调递减,不合题意,舍去;当时,有,显然不成立;当时,由得;由得;所以在单调递减,在单调递增,依题意,需解得,故实数a的取值范围是.【题目点拨】本题考查不等式的正整数解,实质考查用导数研究函数的单调性.掌握用导数研究函数单调性的方法是解题关键.14、4【解题分析】分析:函数是偶函数,还是周期函数,画出函数图像,转化为的图像交点问题来求解详解:,则,周期为当时,由图可得,则方程的实根个数为点睛:本题主要考查的是抽象函数的应用,关键在于根据题意,分析出函数的解析式,作出函数图象,考查了学生的作图能力和数形结合的思想应用,属于中档题。15、【解题分析】

设直线的方程为,联立抛物线的方程得出韦达定理,将翻译成关于点,的关系式,再代入韦达定理求解即可.【题目详解】设直线的方程为,则,设,.则.则由得.代入韦达定理有恒成立.故故答案为:【题目点拨】本题主要考查了直线与抛物线的位置关系,设而不求利用韦达定理翻译题目条件从而进行运算的方法等.属于中等题型.16、【解题分析】

由函数是幂函数,列方程求出的值,再验证是否满足题意.【题目详解】解:由函数是幂函数,则,解得或;当时,,在上为减函数,不合题意;当时,,在上为增函数,满足题意.故答案为.【题目点拨】本题考查了幂函数的定义与应用问题,是基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)66人;(Ⅱ)能.【解题分析】

(I)利用所给数据,求出线性回归方程,令即可得出答案。(Ⅱ)由列联表中数据计算出观测值,与临界值比较即可。【题目详解】(I)利用所给数据,计算=×(1+2+3+4+5)=3,=×(120+105+100+90+85)=100;===100﹣(﹣8.5)×3=125.5;∴与之间的回归直线方程;当时,,即预测该路口7月份的不“礼让斑马线”违章驾驶员有66人;(II)由列联表中数据,计算,由此能判断有97.5%的把握认为“礼让斑马线”行为与驾龄有关.【题目点拨】本题考查线性回归方程与独立性检验,考查学生的理解计算能力,属于简单题。18、(1)(2)或【解题分析】

(1)先化简集合,,根据求解.(2)由(1)得到或,再利用子集的定义由求解.【题目详解】(1)因为集合,,又因为,所以,所以.(2)或,因为,所以或,解得或.【题目点拨】本题主要考查集合的基本关系及其运算,还考查了运算求解的能力,属于中档题.19、(1)函数的单调递减区间是,单调递增区间是.(2)的最小值为.(3)证明见解析.【解题分析】分析:函数的定义域为,(1)函数,据此可知函数的单调递减区间是,单调递增区间是(2)由题意可知在上恒成立.据此讨论可得的最小值为.(3)问题等价于.构造函数,则取最小值.设,则.由于,据此可知题中的结论成立.详解:函数的定义域为,(1)函数,当且时,;当时,,所以函数的单调递减区间是,单调递增区间是(2)因在上为减函数,故在上恒成立.所以当时,,又,故当,即时,.所以,于是,故的最小值为.(3)问题等价于.令,则,当时,取最小值.设,则,知在上单调递增,在上单调递减.∴.∵,∴,∴故当时,.点睛:导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.20、(1);(2);(3)平均数4.30人,方差【解题分析】

(1)根据方差的计算公式可得结果;(2)根据中位数的概念可得结果;(3)根据平均数与标准差的公式计算即可.【题目详解】解:(1)由方差的计算公式得:人口数方差为;(2)263户家庭,则中位数为第户家庭的人口数,,,所以中位数为4;(3)平均数:,标准差:【题目点拨】本题考查平均数,标准差,中位数的计算,是基础题.21、(1)见解析;(2)见解析;(3)【解题分析】试题分析:(1)根据表1和图1即可完成填表,再由将数据代入计算得即把握认为产品的质量指标值与甲、乙两套设备的选择有关(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论