黑龙江省鸡西市2024届数学高二第二学期期末联考模拟试题含解析_第1页
黑龙江省鸡西市2024届数学高二第二学期期末联考模拟试题含解析_第2页
黑龙江省鸡西市2024届数学高二第二学期期末联考模拟试题含解析_第3页
黑龙江省鸡西市2024届数学高二第二学期期末联考模拟试题含解析_第4页
黑龙江省鸡西市2024届数学高二第二学期期末联考模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省鸡西市2024届数学高二第二学期期末联考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.等差数列的前项和,若,则()A.8 B.10 C.12 D.142.设集合A={x|x2-3x<0},B={x|-2≤x≤2},则A∩B=()A.{x|2≤x<3}B.{x|-2≤x<0}C.{x|0<x≤2}D.{x|-2≤x<3}3.设,则的虚部是()A. B. C. D.4.已知函数,若是函数唯一的极值点,则实数的取值范围为()A. B. C. D.5.已知函数g(x)=loga(x﹣3)+2(a>0,a≠1)的图象经过定点M,若幂函数f(x)=xα的图象过点M,则α的值等于()A.﹣1 B.12 C.2 D.6.执行下面的程序框图,若输出的结果为,则判断框中的条件是()A. B. C. D.7.某中学高二年级的一个研究性学习小组拟完成下列两项调查:①从某社区430户高收入家庭,980户中等收入家庭,290户低收入家庭中任意选出170户调查社会购买力的某项指标;②从本年级12名体育特长生中随机选出5人调查其学习负担情况;则该研究性学习小组宜采用的抽样方法分别是()A.①用系统抽样,②用简单随机抽样 B.①用系统抽样,②用分层抽样C.①用分层抽样,②用系统抽样 D.①用分层抽样,②用简单随机抽样8.把函数的图象上所有点向左平行移动个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到的图象所表示的函数是().A. B.C. D.9.已知定义在上的函数的导函数为,若,且,则不等式的解集为()A. B. C. D.10.若变量满足约束条件,则的取值范围是()A. B. C. D.11.欧拉公式(为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,表示的复数位于复平面中的()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.命题“对任意的,,”的否定是()A.不存在, B.不存在,C.存在, D.存在,二、填空题:本题共4小题,每小题5分,共20分。13.两名女生,4名男生排成一排,则两名女生不相邻的排法共有______

种(以数字作答)14.给出定义:对于三次函数设是函数的导数,是的导数,若方程有实数解,则称点为函数的“拐点”,经过研究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.已知函数.设.若则__________.15.已知是第四象限角,,则_______;16.定义在上的偶函数满足且在[—1,0]上是增函数,给出下列关于的判断:①是周期函数;②关于直线对称;③是[0,1]上是增函数;④在[1,2]上是减函数;⑤.其中正确的序号是_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在矩形中,,,是的中点,以为折痕将向上折起,变为,且平面平面.(1)求证:;(2)求二面角的大小.18.(12分)在极坐标系中,曲线的极坐标方程是,以极点为原点,极轴为轴正半轴(两坐标系取相同的单位长度)的直角坐标系中,曲线的参数方程为:(为参数).(1)求曲线的直角坐标方程与曲线的普通方程;(2)将曲线经过伸缩变换后得到曲线,若,分别是曲线和曲线上的动点,求的最小值.19.(12分)的内角的对边分别为已知.(1)求角和边长;(2)设为边上一点,且,求的面积.20.(12分)如图所示圆锥中,为底面圆的两条直径,,且,,为的中点.求:(1)该圆锥的表面积;(2)异面直线与所成的角的大小(结果用反三角函数值表示).21.(12分)如图,在四棱锥P—ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=1,O为AC的中点,PO⊥平面ABCD,PO=1,M为PD的中点.(Ⅰ)证明:PB∥平面ACM;(Ⅱ)设直线AM与平面ABCD所成的角为α,二面角M—AC—B的大小为β,求sinα·cosβ的值.22.(10分)已知复数,为虚数单位,且复数为实数.(1)求复数;(2)在复平面内,若复数对应的点在第一象限,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】试题分析:假设公差为,依题意可得.所以.故选C.考点:等差数列的性质.2、C【解题分析】

求出集合A中不等式的解集,结合集合B,得到两个集合的交集.【题目详解】A={x|x2﹣3x<0}={x|0<x<3},∵B={x|﹣2≤x≤2},∴A∩B={x|0<x≤2},故选:C.【题目点拨】求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解;在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.3、B【解题分析】

直接利用复数代数形式的乘除运算化简得,进而可得的虚部.【题目详解】∵,∴,∴的虚部是,故选B.【题目点拨】本题考查复数代数形式的乘除运算,考查复数的基本概念,共轭复数的概念,属于基础题.4、A【解题分析】分析:由的导函数形式可以看出,需要对k进行分类讨论来确定导函数为0时的根.详解:函数的定义域是,,是函数唯一的极值点,是导函数的唯一根,在无变号零点,即在上无变号零点,令,,在上单调递减,在上单调递增,的最小值为,必须.故选A.点睛:本题考查由函数的导函数确定极值问题,对参数需要进行讨论.5、B【解题分析】

由对数函数的性质得到点M(4,2)在幂函数f(x)=xα的图象上,由此先求出幂函数f(x),从而能求出α的值.【题目详解】∵y=loga(x﹣3)+2(a>0,a≠1)的图象过定点M,∴M(4,2),∵点M(4,2)也在幂函数f(x)=xα的图象上,∴f(4)=4α=2,解得α=12故选B.【题目点拨】本题考查函数值的求法,是基础题,解题时要认真审题,注意对数函数、幂函数的性质的合理运用.6、C【解题分析】

根据已知的程序语句可得,该程序的功能是利用循环结构计算并输出变量的值,模拟程序的运行过程,即可得出答案.【题目详解】解:当时,不满足输出结果为,进行循环后,,;当时,不满足输出结果为,进行循环后,,;当时,不满足输出结果为,进行循环后,,;当时,不满足输出结果为,进行循环后,,;当时,不满足输出结果为,进行循环后,,;当时,满足输出结果为,故进行循环的条件,应为:.故选:C.【题目点拨】本题考查程序框图的应用,属于基础题.7、D【解题分析】

①总体由差异明显的几部分构成时,应选用分层抽样;②总体个体数有限、逐个抽取、不放回、每个个体被抽到的可能性均等,应选用简单随机抽样;∴选D8、A【解题分析】

先根据左加右减的性质进行平移,再根据横坐标伸长到原来的2倍时的值变为原来的倍,得到答案.【题目详解】解:向左平移个单位,即以代,得到函数,再把所得图象上所有点的横坐标伸长到原来的2倍,即以代,得到函数:.故选:A.【题目点拨】本题主要考查三角函数的变换,属于基础题.9、C【解题分析】

构造函数,利用导数判断出函数的单调性,将不等式变形为,结合函数的单调性可解出该不等式.【题目详解】构造函数,则,所以,函数在上单调递减,由,可得,即,解得,因此,不等式的解集为,故选C.【题目点拨】本题考查利用导数求解函数不等式,解决这类不等式的基本步骤如下:(1)根据导数不等式的结构构造新函数;(2)利用导数研究函数的单调性,必要时要考查该函数的奇偶性;(3)将不等式转化为的形式,结合函数的单调性进行求解.10、B【解题分析】分析:根据约束条件画出平面区域,再将目标函数转换为,则为直线的截距,通过平推法确定的取值范围.详解:(1)画直线,和,根据不等式组确定平面区域,如图所示.(2)将目标函数转换为直线,则为直线的截距.(3)画直线,平推直线,确定点A、B分别取得截距的最小值和最大值.易得,联立方程组,解得,B坐标为(4)分别将点A、B坐标代入,,的取值范围是故选B.点睛:本题主要考查线性规划问题,数形结合是解决问题的关键.目标函数型线性规划问题解题步骤:(1)确定可行区域(2)将转化为,求z的值,可看做求直线,在y轴上截距的最值。(3)将平移,观察截距最大(小)值对应的位置,联立方程组求点坐标。(4)将该点坐标代入目标函数,计算Z。11、B【解题分析】,对应点,位于第二象限,选B.12、C【解题分析】

已知命题为全称命题,则其否定应为特称命题,直接写出即可.【题目详解】命题“对任意的”是全称命题,它的否定是将量词的任意的实数变为存在,再将不等号变为即可.即得到:存在.故选:C.【题目点拨】本题主要考查全称命题的否定,注意量词和不等号的变化,属于简单题.二、填空题:本题共4小题,每小题5分,共20分。13、480【解题分析】分析:由题意,先排男生,再插入女生,即可得两名女生不相邻的排法.详解:由题意,其中名男生共有种不同的排法,再将两名女生插入名男生之间,共有中不同的方法,所以两名女生不相邻的排法共有中不同的排法.点睛:本题主要考查了排列的应用,其中认真分析题意,得道现排四名男生,在把两名女生插入四名男生之间是解答的关键,着重考查了分析问题和解答问题的能力.14、-4037【解题分析】

由题意对已知函数求两次导数,令二阶导数为零,即可求得函数的中心对称,即有,,借助倒序相加的方法,可得进而可求的解析式,求导,当代入导函数解得,计算求解即可得出结果.【题目详解】函数函数的导数由得解得,而故函数关于点对称,故,两式相加得,则.同理,,,令,则,,故函数关于点对称,,两式相加得,则.所以当时,解得:,所以则.故答案为:-4037.【题目点拨】本题考查对新定义的理解,考查二阶导数的求法,仔细审题是解题的关键,考查倒序法求和,难度较难.15、【解题分析】

:由同角三角关系求解【题目详解】:,设,由同角三角关系可得。【题目点拨】:三角正余弦值的定义为,。16、①②⑤.【解题分析】,周期为2,,又,所以f(x)关于直线x=1对称,又因为f(x)为偶函数,在[-1,0]是增函数,所以在[0,1]上是减函数,由于f(x)在[1,2]上的图像与[-1,0]上的相同,因而在[1,2]也是增函数,综上正确的有①②⑤.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见证明;(2)90°【解题分析】

(1)利用垂直于所在的平面,从而证得;(2)找到三条两两互相垂直的直线,建立空间直角坐标系,写出点的坐标,再分别求出两个面的法向量,,最后求法向量的夹角的余弦值,进而得到二面角的大小.【题目详解】(1)证明:∵,,∴,∴,∵,,,∴,,∴.(2)如图建立空间直角坐标系,则、、、、,从而,,.设为平面的法向量,则令,所以,设为平面的法向量,则,令,所以,因此,,有,即,故二面角的大小为.【题目点拨】证明线线垂直的一般思路:证明一条直线垂直于另一条直线所在的平面,所以根据题目所给的图形,观察并确定哪一条线垂直于哪一条线所在的平面,是证明的关键.18、(1)(2)【解题分析】

(1)∵的极坐标方程是,∴,整理得,∴的直角坐标方程为.曲线:,∴,故的普通方程为.(2)将曲线经过伸缩变换后得到曲线的方程为,则曲线的参数方程为(为参数).设,则点到曲线的距离为.当时,有最小值,所以的最小值为.19、(1),;(2).【解题分析】试题分析:(1)先根据同角的三角函数的关系求出从而可得的值,再根据余弦定理列方程即可求出边长的值;(2)先根据余弦定理求出,求出的长,可得,从而得到,进而可得结果.试题解析:(1),,由余弦定理可得,即,即,解得(舍去)或,故.(2),,,,,.20、(1);(2).【解题分析】

(1)先计算出圆锥的母线长度,然后计算出圆锥的侧面积和底面积,即可计算出圆锥的表面积;(2)连接,根据位置关系可知异面直线与所成的角即为或其补角,根据线段长度即可计算出的值,即可求解出异面直线所成角的大小.【题目详解】(1)因为,所以,所以圆锥的侧面积为:,圆锥的底面积为:,所以圆锥的表面积为:;(2)连接,如下图所示:因为为的中点,为的中点,所以且,所以异面直线与所成的角即为或其补角,因为,,,所以平面,因为平面,所以,所以,所以异面直线与所成的角的大小为:.【题目点拨】本题考查圆锥的表面积计算以及异面直线所成角的求解,难度较易.(1)圆锥的表面积包含两部分:侧面积、底面积;(2)求解异面直线所成角的几何方法:将直线平移至同一平面内,即可得到异面直线所成角或其补角,然后根据线段长度即可求解出对应角的大小.21、(1)证明见解析(2)【解题分析】试题分析:(1)连接BD,MO,在平行四边形ABCD中,由O为AC的中点,知O为BD的中点,再由M为PD的中点,知PB∥MO,由此能够证明PB∥平面ACM.(2)取DO中点N,连接MN,AN,由M为PD的中点,知MN∥PO,且MN=PO=1,由PO⊥平面ABCD,得MN

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论