浙江省杭州市八校联盟2024届数学高二下期末质量检测试题含解析_第1页
浙江省杭州市八校联盟2024届数学高二下期末质量检测试题含解析_第2页
浙江省杭州市八校联盟2024届数学高二下期末质量检测试题含解析_第3页
浙江省杭州市八校联盟2024届数学高二下期末质量检测试题含解析_第4页
浙江省杭州市八校联盟2024届数学高二下期末质量检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省杭州市八校联盟2024届数学高二下期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.“”是“函数为奇函数”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件2.设为随机变量,,若随机变量的数学期望,则等于()A. B.C. D.3.若执行如图所示的程序框图,则输出S的值为()A. B. C. D.4.已知,设函数若关于的不等式在上恒成立,则的取值范围为()A. B. C. D.5.设,复数,则在复平面内的对应点一定不在()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.如图,向量对应的复数为,则复数的共轭复数是()A. B. C. D.7.已知函数有两个不相同的零点,则的取值范围为()A. B. C. D.8.已知集合,若,则实数的值为()A.或 B.或 C.或 D.或或9.下列四个结论:①在回归分析模型中,残差平方和越大,说明模型的拟合效果越好;②某学校有男教师60名、女教师40名,为了解教师的体育爱好情况,在全体教师中抽取20名调查,则宜采用的抽样方法是分层抽样;③线性相关系数越大,两个变量的线性相关性越弱;反之,线性相关性越强;④在回归方程中,当解释变量每增加一个单位时,预报变量增加0.5个单位.其中正确的结论是()A.①② B.①④C.②③ D.②④10.已知-1,a,b,-5成等差数列,-1,c,-4成等比数列,则a+b+c=()A.-8 B.-6 C.-6或-4 D.-8或-411.设随机变量,若,则等于()A. B. C. D.12.等比数列的前n项和,前2n项和,前3n项的和分别为A,B,C,则A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数在上单调递增,则的取值范围为_______.14.的展开式中的常数项为______。15.盒子里有完全相同的6个球,每次至少取出1个球(取出不放回),取完为止,则共有_______种不同的取法(用数字作答).16.已知函数,则曲线在处的切线方程为_____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)求的最小值(2)若不等式的解集为M,且,证明:.18.(12分)已知定点及直线,动点到直线的距离为,若.(1)求动点的轨迹C方程;(2)设是上位于轴上方的两点,坐标为,且,的延长线与轴交于点,求直线的方程.19.(12分)已知函数是上的奇函数(为常数),,.(1)求实数的值;(2)若对任意,总存在,使得成立,求实数的取值范围;(3)若不等式成立,求证实数的取值范围.20.(12分)如图,在矩形ABC中,,,E在线段AD上,,现沿BE将ABE折起,使A至位置,F在线段上,且.(1)求证:平面;(2)若在平面BCDE上的射影O在直线BC上,求直线与平面所成角的正弦值.21.(12分)在四棱锥中,四边形是平行四边形,且,.(1)求异面直线与所成角的余弦值;(2)若,,二面角的平面角的余弦值为,求的正弦值.22.(10分)在直角坐标系中,直线,圆.以原点为极点,轴的正半轴为极轴建立极坐标系.(1)求的极坐标方程;(2)若直线的极坐标方程为,设与的交点为、,求.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】时,,当时,,函数为奇函数;当时,,函数不是奇函数时,不一定奇函数,当是奇函数时,由可得,所以“”是“函数为奇函数”的必要不充分条件,故选B.2、A【解题分析】

根据解得,所以.【题目详解】因为,得,即.所以.故选【题目点拨】本题主要考查二项分布,同时考查了数学期望,熟记公式是解题的关键,属于简单题.3、C【解题分析】

首先确定流程图的功能为计数的值,然后利用裂项求和的方法即可求得最终结果.【题目详解】由题意结合流程图可知流程图输出结果为,,.本题选择C选项.【题目点拨】识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.4、C【解题分析】

先判断时,在上恒成立;若在上恒成立,转化为在上恒成立.【题目详解】∵,即,(1)当时,,当时,,故当时,在上恒成立;若在上恒成立,即在上恒成立,令,则,当函数单增,当函数单减,故,所以.当时,在上恒成立;综上可知,的取值范围是,故选C.【题目点拨】本题考查分段函数的最值问题,关键利用求导的方法研究函数的单调性,进行综合分析.5、C【解题分析】

在复平面内的对应点考查点横纵坐标的正负,分情况讨论即可.【题目详解】由题得,在复平面内的对应点为.当,即时,二次函数取值范围有正有负,故在复平面内的对应点可以在一二象限.当,即时,二次函数,故在复平面内的对应点可以在第四象限.故在复平面内的对应点一定不在第三象限.故选:C【题目点拨】本题主要考查了复平面的基本定义与根据参数范围求解函数范围的问题,属于基础题型.6、B【解题分析】

由已知求得,代入,再由复数代数形式的乘除运算化简得答案.【题目详解】解:由图可知,,,复数的共轭复数是.故选:.【题目点拨】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,属于基础题.7、C【解题分析】

对函数求导得,当时,原函数单调递增,不能有两个零点,不符合题意,当时,为最小值,函数在定义域上有两个零点,则,即,又,则在上有唯一的一个零点,由,那么,构造新函数,求导可得g(a)单调性,再由,即可确定f(x)在上有一个零点,则a的范围可知.【题目详解】函数的定义域为,且.①当时,成立,所以函数在为上增函数,不合题意;②当时,,所以函数在上为增函数;当时,,所以函数在上为减函数.此时的最小值为,依题意知,解得.由于,,函数在上为增函数,所以函数在上有唯一的一个零点.又因为,所以.,令,当时,,所以.又,函数在上为减函数,且函数的图象在上不间断,所以函数在上有唯一的一个零点.综上,实数的取值范围是.故选C.【题目点拨】本题考查已知函数有两个不同零点,利用导数求函数中参数的取值范围.通过求导逐步缩小参数a的范围,题中为的最小值且,解得,,先运用零点定理确定点a右边有唯一一个零点,同理再通过构造函数,求导讨论单调性的方法确定点a左边有另一个唯一一个零点,最终得出参数范围,题目有一定的综合性.8、D【解题分析】

就和分类讨论即可.【题目详解】因为当时,,满足;当时,,若,所以或.综上,的值为0或1或2.故选D.【题目点拨】本题考查集合的包含关系,属于基础题,解题时注意利用集合中元素的性质(如互异性、确定性、无序性)合理分类讨论.9、D【解题分析】

根据残差的意义可判断①;根据分成抽样特征,判断②;根据相关系数的意义即可判断③;由回归方程的系数,可判断④.【题目详解】根据残差的意义,可知当残差的平方和越小,模拟效果越好,所以①错误;当个体差异明显时,选用分层抽样法抽样,所以②正确;根据线性相关系数特征,当相关系数越大,两个变量的线性相关性越强,所以③错误;根据回归方程的系数为0.5,所以当解释变量每增加一个单位时,预报变量增加0.5个单位.综上,②④正确,故选D.【题目点拨】本题考查了统计的概念和基本应用,抽样方法、回归方程和相关系数的概念和性质,属于基础题.10、D【解题分析】

根据等差数列的性质可得出a+b的值,利用等比中项的性质求出c的值,于此可得出a+b+c的值。【题目详解】由于-1、a、b、-5成等差数列,则a+b=-1又-1、c、-4成等比数列,则c2=-1当c=-2时,a+b+c=-8;当c=2时,a+b+c=-4,因此,a+b+c=-8或-4,故选:D。【题目点拨】本题考查等差数列和等比数列的性质,在处理等差数列和等比数列相关问题时,可以充分利用与下标相关的性质,可以简化计算,考查计算能力,属于中等题。11、C【解题分析】由于,则由正态分布图形可知图形关于对称,故,则,故选C.12、D【解题分析】分析:由等比数列的性质,可知其第一个项和,第二个项和,第三个项和仍然构成等比数列,化简即可得结果.详解:由等比数列的性质可知,等比数列的第一个项和,第二个项和,第三个项和仍然构成等比数列,则有构成等比数列,,即,,故选D.点睛:本题考查了等比数列的性质,考查了等比数列前项和,意在考查灵活运用所学知识解决问题的能力,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】分析:由条件可得①,②,由单调递增的定义可知③,由①②③求得交集即可得到答案详解:函数在上单调递增,时为增,即①时也为增,即有②又由单调递增的定义可知③由②可得由③可得故的取值范围为点睛:本题考查了分段函数的应用,考查了函数的单调性及其应用,助于分段函数的分界点的情况,是一道中档题,也是易错题。14、240【解题分析】

根据二项式展开式通项公式确定常数项对应项数,再代入得结果【题目详解】,令得,,所以的展开式中的常数项为.【题目点拨】本题考查求二项式展开式中常数项,考查基本分析求解能力,属基础题.15、32【解题分析】分析:根据题意,按6个球取出的数目分6种情况讨论,分析求出每一种情况的取法数目,由加法原理计算可得答案.详解:由题意,一次可以取球的个数为1,2,3,4,5,6个,则若一次取完可由1个6组成,有1种;二次取完可由1与5,2与4,3与3组成共5种;三次取完由1,1,4或1,2,3或2,2,2组成共10种;四次取完有1,1,1,3或1,1,2,2组成共10种;五次取完,由1,1,1,1,2个组成共5种;六次取完由6个1组成共有1种,综上得,共有32种,故答案为32.点睛:此题主要考查数学中计数原理在实际问题中的应用,属于中档题型,也是常考考点.计数原理是数学中的重要研究对象之一,分类加法计数原理、分步乘法计数原理是解计数问题最基本、最重要的方法,也称为基本计数原理,它们为解决很多实际问题提供了思想和工具.16、【解题分析】

利用导数的几何意义,求出切线斜率,由点斜式即可求得切线方程。【题目详解】因为,所以,切点坐标为,故切线方程为:即。【题目点拨】本题主要考查利用导数的几何意义求函数曲线在某点处的切线方程。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解题分析】

根据题意,由函数的解析式分3种情况讨论,分段求出函数的最小值,综合3种情况即可得答案;根据题意,分3种情况讨论,求出不等式的解集,又由a,,可得,,分析可得,变形即可得结论.【题目详解】(1),在上单调递减,在上单调递增,.2若,则,或,或,,,,,,,即.【题目点拨】本题考查分段函数的应用和绝对值不等式的解法,考查了转化思想,属中档题.18、(1)(2)【解题分析】

(1)直接把条件用坐标表示,并化简即可;(2)设,由可得的关系,的关系,再结合在曲线上,可解得,从而能求得的方程.【题目详解】(1)设,则由,知又,∴由题意知:∴∴∴点的轨迹方程为(2)设,∵∴为中点,∵∴∴又,∴又,∴∵,∴,∴∴直线方程为【题目点拨】本题考查椭圆的轨迹方程,直线与椭圆的位置关系,求轨迹方程用的是直接法,另外还有定义法、相关点法、参数法、交轨法等.19、(1).(2).(3)【解题分析】

因为函数是R上的奇函数,令可求a;

对任意,总存在,使得成立,故只需满足值域是的值域的子集;

由不等式得,,构造利用单调性可求解正实数t的取值范围.【题目详解】(1)因为为上的奇函数,所以,即,解得得,当时,由得为奇函数,所以.(2)因为,且在上是减函数,在上为增函数所以在上的取值集合为.由,得是减函数,所以在上是减函数,所以在上的取值集合为.由“任意,总存在,使得成立”在上的取值集合是在上的取值集合的子集,即.则有,且,解得:.即实数的取值范围是.(3)记,则,所以是减函数,不等式等价于,即,因为是减函数,所以,解得,所以实数的取值范围是.【题目点拨】本题主要考查了函数最值的求法,通过子集的关系求参数的范围,构造函数求参数范围,属于难题.20、(1)见解析(2)【解题分析】

(1)取,再根据平几知识证,最后根据线面平行判定定理以及面面平行判定定理及其性质得结果;(2)建立空间直角坐标系,利用向量数量积求出平面法向量,根据向量夹角公式求夹角,最后根据向量夹角与线面角关系得结果.【题目详解】(1)取,因为,所以平面,平面,所以平面,因为四边形为平行四边形,即平面,平面,所以平面,因为平面,所以平面平面,因为平面,所以平面(2)以O为坐标原点,建立如图所示空间直角坐标系,设,因为设平面法向量为,则即即令因为,所以因此直线与平面所成角的正弦值为【题目点拨】本题考查线面平行判定定理以及利用空间向量求线面角,考查综合分析论证与求解能力,属中档题.21、(1)0;(2).【解题分析】

(1)首先设与的交点为,连接.根据已知及三角形全等的性质可证明面,即可得到异面直线与所成角的余弦值.(2)首

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论