版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东省普宁二中高二数学第二学期期末调研试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在高校自主招生中,某学校获得5个推荐名额,其中清华大学2名,北京大学2名,浙江大学1名,并且清华大学和北京大学都要求必须有男生参加,学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有()A.36种 B.24种 C.22种 D.20种2.下列关于曲线的结论正确的是()A.曲线是椭圆 B.关于直线成轴对称C.关于原点成中心对称 D.曲线所围成的封闭图形面积小于43.下列两个量之间的关系是相关关系的为()A.匀速直线运动的物体时间与位移的关系B.学生的成绩和体重C.路上酒后驾驶的人数和交通事故发生的多少D.水的体积和重量4.中,边的高为,若,,,,,则()A. B. C. D.5.设是函数的导函数,则的值为()A. B. C. D.6.如图,,分别是边长为4的等边的中线,圆是的内切圆,线段与圆交于点.在中随机取一点,则此点取自图中阴影部分的概率是()A. B. C. D.7.为预测某种产品的回收率y,需要研究它和原料有效成分的含量x之间的相关关系,现取了8组观察值.计算得,,,,则y对x的回归方程是()A.=11.47+2.62x B.=-11.47+2.62xC.=2.62+11.47x D.=11.47-2.62x8.展开式中不含项的系数的和为A. B. C. D.29.()A.5 B. C.6 D.10.复数=A. B. C. D.11.变量满足约束条件,若的最大值为2,则实数等于()A.—2 B.—1 C.1 D.212.已知函数,若只有一个极值点,则实数的取值范围是A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,在杨辉三角形中,斜线1的上方,从1开始箭头所示的数组成一个锯齿形数列:1,3,3,4,6,5,10,…,记其前项和为,则__________.14.球的表面积是其大圆面积的________倍.15.是正四棱锥,是正方体,其中,,则到平面的距离为________16.现有个大人,个小孩站一排进行合影.若每个小孩旁边不能没有大人,则不同的合影方法有__________种.(用数字作答)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)当时,求曲线在处的切线方程;(2)求函数的单调区间.18.(12分)已知(1)求;(2)若,求实数的值.19.(12分)思南县第九届中小学运动会于2019年6月13日在思南中学举行,组委会在思南中学招募了12名男志愿者和18名女志愿者,将这30名志愿者的身高如图所示的茎叶图(单位:cm),身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“非高个子”,且只有“女高个子”才担任“礼仪小姐”.男女9157789998161245898650172345674211801119(1)如果用分层抽样的方法从“高个子”和“非高个子”中共抽取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?(2)若从所有“高个子”中选3名志愿者,用表示所选志愿者中能担任“礼仪小姐”的人数,求出的分布列和数学期望.20.(12分)平顶山市公安局交警支队依据《中华人民共和国道路交通安全法》第条规定:所有主干道路凡机动车途经十字口或斑马线,无论转弯或者直行,遇有行人过马路,必须礼让行人,违反者将被处以元罚款,记分的行政处罚.如表是本市一主干路段监控设备所抓拍的个月内,机动车驾驶员不“礼让斑马线”行为统计数据:月份违章驾驶员人数(Ⅰ)请利用所给数据求违章人数与月份之间的回归直线方程;(Ⅱ)预测该路段月份的不“礼让斑马线”违章驾驶员人数.参考公式:,.21.(12分)已知抛物线C:y2=4x和直线l:x=-1.(1)若曲线C上存在一点Q,它到l的距离与到坐标原点O的距离相等,求Q点的坐标;(2)过直线l上任一点P作抛物线的两条切线,切点记为A,B,求证:直线AB过定点.22.(10分)已知函数,为的导函数.证明:(1)在区间存在唯一极小值点;(2)有且仅有个零点.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】根据题意,分2种情况讨论:①、第一类三个男生每个大学各推荐一人,两名女生分别推荐北京大学和清华大学,共有=12种推荐方法;②、将三个男生分成两组分别推荐北京大学和清华大学,其余2个女生从剩下的2个大学中选,共有=12种推荐方法;故共有12+12=24种推荐方法,故选B.2、C【解题分析】
根据椭圆的方程判断曲线不是椭圆;把曲线中的,同时换成,,判断曲线是否关于直线对称;把曲线中的,同时换成,,判断曲线是否关于原点对称;根据,,判断曲线所围成的封闭面积是否小于1.【题目详解】曲线,不是椭圆方程,曲线不是椭圆,错误;把曲线中的,同时换成,,方程变为,曲线不关于直线对称,错误;把曲线中的,同时换成,,方程不变,曲线关于原点对称,正确;,,曲线所围成的封闭面积小于,令,所以曲线上的四点围成的矩形面积为,所以选项D错误.故选:.【题目点拨】本题主要考查了方程所表示的曲线以及曲线的对称性问题,解题时应结合圆锥曲线的定义域性质进行解答,是基础题.3、C【解题分析】
根据相关关系以及函数关系的概念,逐项判断,即可得出结果.【题目详解】A选项,匀速直线运动的物体时间与位移的关系是函数关系;B选项,成绩与体重之间不具有相关性;C选项,路上酒后驾驶的人数和交通事故发生的多少是相关关系;D选项,水的体积与重量是函数关系.故选C【题目点拨】本题主要考查变量间的相关关系,熟记概念即可,属于常考题型.4、D【解题分析】
试题分析:由,,可知5、C【解题分析】分析:求导,代值即可.详解:,则.故选:C.点睛:对于函数求导,一般要遵循先化简再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.6、A【解题分析】
利用等边三角形中心的性质,求得内切圆的半径和阴影部分面积,再根据几何概型计算公式计算出所求的概率.【题目详解】在中,,,因为,所以,即圆的半径为,由此可得图中阴影部分的面积等于,的面积为,故所求概率.故选A.【题目点拨】本题考查几何概型问题,考查数据处理能力和应用意识.属于中档题.7、A【解题分析】分析:根据公式计算≈2.62,≈11.47,即得结果.详解:由,直接计算得≈2.62,≈11.47,所以=2.62x+11.47.选A.点睛:函数关系是一种确定的关系,相关关系是一种非确定的关系.事实上,函数关系是两个非随机变量的关系,而相关关系是非随机变量与随机变量的关系.如果线性相关,则直接根据用公式求,写出回归方程,回归直线方程恒过点.8、B【解题分析】试题分析:由二项式定理知,展开式中最后一项含,其系数为1,令=1得,此二项展开式的各项系数和为=1,故不含项的系数和为1-1=0,故选B.考点:二项展开式各项系数和;二项展开式的通项9、A【解题分析】
由题,先根据复数的四则运算直接求出结果即可【题目详解】由题故选A【题目点拨】本题考查了复数的运算,属于基础题.10、A【解题分析】
根据复数的除法运算得到结果.【题目详解】复数=故答案为:A.【题目点拨】本题考查了复数的运算法则,考查了推理能力与计算能力,属于基础题,复数问题高考必考,常见考点有:点坐标和复数的对应关系,点的象限和复数的对应关系,复数的加减乘除运算,复数的模长的计算.11、C【解题分析】
将目标函数变形为,当取最大值,则直线纵截距最小,故当时,不满足题意;当时,画出可行域,如图所示,其中.显然不是最优解,故只能是最优解,代入目标函数得,解得,故选C.考点:线性规划.12、C【解题分析】
由,令,解得或,令,利用导数研究其单调性、极值,得出结论.【题目详解】,令,解得或,令,可得,当时,函数取得极小值,,所以当时,令,解得,此时函数只有一个极值点,当时,此时函数只有一个极值点1,满足题意,当时不满足条件,舍去.综上可得实数的取值范围是,故选C.【题目点拨】本题主要考查了利用导数研究函数的单调性与极值、方程与不等式的解法、分类讨论思想,属于难题.二、填空题:本题共4小题,每小题5分,共20分。13、361【解题分析】
将按照奇偶分别计算:当为偶数时,;当为奇数时,,计算得到答案.【题目详解】解法一:根据杨辉三角形的生成过程,当为偶数时,,当为奇数时,,,,,,,,解法二:当时,,当时,,【题目点拨】本题考查了数列的前N项和,意在考查学生的应用能力和解决问题的能力.14、【解题分析】
设球的半径为,可得出球的表面积和球的大圆面积,从而可得出结果.【题目详解】设球的半径为,则球的表面积为,球的大圆面积为,因此,球的表面积是其大圆面积的倍,故答案为:.【题目点拨】本题考查球的表面积公式的应用,考查计算能力,属于基础题.15、【解题分析】
以为轴,为轴,为轴建立空间直角坐标系,求出平面的法向量,的坐标,利用距离公式,即可得到结论.【题目详解】解:以为轴,为轴,为轴建立空间直角坐标系,
设平面的法向量是,
,
∴由,可得
取得,
,
∴到平面的距离.故答案为:.【题目点拨】本题考查点到平面的距离,考查向量知识的运用,考查学生的计算能力,属于中档题.16、【解题分析】分析:根据题意可得可以小孩为对象进行分类讨论:第一类:2个小孩在一起,第二类小孩都不相邻.分别计算求和即可得出结论。详解:根据题意可得可以小孩为对象进行分类讨论:第一类:2个小孩在一起:,第二类:小孩都不在一起:,故不同的合影方法有216+144=360种,故答案为360点睛:考查计数原理和排列组合的综合,对于此类题首先要把题意分析清楚,分清楚所讨论的类别,再根据讨论情况逐一求解即可,注意计算的准确性.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)见解析【解题分析】
(1)利用解析式求出切点坐标,再利用导数求出切线斜率,从而得到切线方程;(2)求导后可知导函数的正负由的符号决定;分别在,和三种情况下讨论的正负,从而得到导函数的正负,进而确定的单调区间;在讨论时要注意的定义域与的根的大小关系.【题目详解】当时,,则又,所以在处的切线方程为,即(2)由函数,得:当时,又函数的定义域为所以的单调递减区间为当时,令,即,解得:当时,所以变化情况如下表:极小值所以的单调递减区间为,;单调递增区间为当时,所以变化情况如下表:极大值所以的单调递增区间为;单调递减区间为,【题目点拨】本题考查利用导数的几何意义求解切线方程、讨论含参数函数的单调性问题;解决含参函数单调性问题的关键是对于影响导函数符号的式子的讨论;本题的易错点是在讨论过程中忽略最高次项系数为零的情况和函数的定义域的影响.18、(1);(2)【解题分析】分析:(1)化简复数为代数形式后,再结合复数模的公式,即可求解;(2)化简复数z为1+i,由条件可得a+b+(a+2)i=1﹣i,解方程求得a,b的值.详解:(1)化简得(2)解得点睛:本题考查了复数的运算法则、复数相等,考查了推理能力与计算能力,属于基础题,复数问题高考必考,常见考点有:点坐标和复数的对应关系,点的象限和复数的对应关系,复数的加减乘除运算,复数的模长的计算.19、(1);(2)详见解析.【解题分析】
(1)由题意及茎叶图,有“高个子”12人,“非高个子”18人,利用用分层抽样的方法,每个人被抽中的概率是,利用对立事件即可(2)由于从所有“高个子”中选3名志愿者,用表示所选志愿者中能担任“礼仪小姐”的人数,利用离散型随机变量的定义及题意可知的取值为0,1,2,3,利用古典概型的概率公式求出每一个值对应事件的概率,有期望的公式求出即可【题目详解】(1)根据茎叶图,有“高个子”12人,“非高个子”18人,用分层抽样的方法,每个人被抽中的概率是,所以选中的“高个子”有人,“非高个子”有人.用事件A表示“至少有一名“高个子”被选中”,则它的对立事件表示“没有一名“高个子”被选中”,则因此,至少有一人是“高个子”的概率是.(2)依题意,的取值为0,1,2,3.
的分布列为:0123P所以【题目点拨】本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题.解题时要注意茎叶图的合理运用.20、(Ⅰ);(Ⅱ)人.【解题分析】
(Ⅰ)计算出和,然后根据公式,求出和,得到回归直线方程;(Ⅱ)根据回归直线方程,代入【题目详解】解:(Ⅰ)由表中数据,计算;,,,所以与之间的回归直线方程为;(Ⅱ)时,,预测该路段月份的不“礼让斑马线”违章驾驶员人数为人.【题目点拨】本题考查最小二乘法求回归直线方程,根据回归方程进行预测,属于简单题.21、(1);(2)证明见解析.【解题分析】试题分析:(1)设Q(x,y),则(x+1)2=x2+y2,又y2=4x,解得Q;(2)设点(-1,t)的直线方程为y-t=k(x+1),联立y2=4x,则Δ=0,得k2+kt-1=0,则切点分别为A,B,所以A,B,F三点共线,AB过点F(1,0)。试题解析:(1)设Q(x,y),则(x+1)2=x2+y2,即y2=2x+1,由解得Q.(2)设过点(-1,t)的直线方程为y-t=k(x+1)(k≠0),代入y2=4x,得ky2-4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论