山西农业大学附属中学2024届数学高一上期末学业质量监测试题含解析_第1页
山西农业大学附属中学2024届数学高一上期末学业质量监测试题含解析_第2页
山西农业大学附属中学2024届数学高一上期末学业质量监测试题含解析_第3页
山西农业大学附属中学2024届数学高一上期末学业质量监测试题含解析_第4页
山西农业大学附属中学2024届数学高一上期末学业质量监测试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西农业大学附属中学2024届数学高一上期末学业质量监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列各式化简后的结果为cosxA.sinx+πC.sinx-π2.定义域为R的函数,若关于的方程恰有5个不同的实数解,则=A.0 B.C. D.13.已知函数的定义域和值域都是,则()A. B.C.1 D.4.已知命题:,总有,则命题的否定为()A.,使得 B.,使得C.,总有 D.,总有5.若函数为上的奇函数,则实数的值为()A. B.C.1 D.26.命题:,的否定是()A., B.,C., D.,7.命题“,使得”的否定是()A., B.,C., D.,8.函数的零点个数为()A.2 B.3C.4 D.59.在空间坐标系中,点关于轴的对称点为()A. B.C. D.10.若正实数,满足,则的最小值为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的反函数为___________12.若,则的最小值为__________.13.在三棱柱中,各棱长相等,侧棱垂直于底面,点是侧面的中心,则与平面所成角的大小是______.14.已知函数,的最大值为3,最小值为2,则实数的取值范围是________.15.设扇形的周长为,面积为,则扇形的圆心角的弧度数是________16.两条直线与互相垂直,则______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设集合,,(1),求;(2)若“”是“”的充分条件,求的取值范围18.已知函数(且).(1)判断函数的奇偶性,并证明;(2)若,不等式在上恒成立,求实数的取值范围;(3)若且在上最小值为,求m的值.19.已知幂函数的图象经过点(1)求的解析式;(2)设,(i)利用定义证明函数在区间上单调递增(ii)若在上恒成立,求t的取值范围20.某工厂利用辐射对食品进行灭菌消毒,先准备在该厂附近建一职工宿舍,并对宿舍进行防辐射处理,防辐射材料的选用与宿舍到工厂距离有关.若建造宿舍的所有费用p(万元)和宿舍与工厂的距离x(km)的关系式为p=k4x+5(0≤x≤15),若距离为10km时,测算宿舍建造费用为20万元.为了交通方便,工厂与宿舍之间还要修一条道路,已知购置修路设备需10万元,铺设路面每千米成本为4万元.设(1)求fx(2)宿舍应建在离工厂多远处,可使总费用最小,并求fx21.如图所示,在四棱锥中,底面是矩形,侧棱垂直于底面,分别是的中点.求证:(1)平面平面;(2)平面平面.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】利用诱导公式化简每一个选项即得解.【详解】解:A.sinx+B.sin2π+xC.sinx-D.sin2π-x故选:A2、C【解析】本题考查学生的推理能力、数形结合思想、函数方程思想、分类讨论等知识如图,由函数的图象可知,若关于的方程恰有5个不同的实数解,当时,方程只有一根为2;当时,方程有两不等实根(),从而方程,共有四个根,且这四个根关于直线对称分布,故其和为8.从而,,选C【点评】本题需要学生具备扎实的基本功,难度较大3、A【解析】分和,利用指数函数的单调性列方程组求解.【详解】当时,,方程组无解当时,,解得故选:A.4、B【解析】根据全称命题的否定性质进行判断即可.【详解】因为全称命题的否定是特称命题,所以命题的否定为,使得,故选:B5、A【解析】根据奇函数的性质,当定义域中能取到零时,有,可求得答案.【详解】函数为上的奇函数,故,得,当时,满足,即此时为奇函数,故,故选:A6、D【解析】由全称量词命题与存在量词命题的否定判断即可.【详解】由全称量词命题与存在量词命题的否定,可知原命题的否定为,故选:D7、B【解析】根据特称命题的否定的知识确定正确选项.【详解】原命题是特称命题,其否定是全称命题,注意否定结论,所以,命题“,使得”的否定是,.故选:B8、B【解析】先用诱导公式得化简,再画出图象,利用数形结合即可【详解】由三角函数的诱导公式得,函数的零点个数,即方程的根的个数,即曲线()与的公共点个数.在同一坐标系中分别作出图象,观察可知两条曲线的交点个数为3,故函数的零点个数为3故选:B.9、C【解析】两点关于轴对称,则纵坐标相同,横坐标互为相反数,竖坐标互为相反数,由此可直接得出结果.【详解】解:两点关于轴对称,则纵坐标相同,横坐标互为相反数,竖坐标互为相反数,所以点关于轴的对称点的坐标是.故选:C.10、B【解析】由基本不等式有,令,将已知等式转化为关于的一元二次不等式,解不等式即可得答案.【详解】解:由题意,正实数满足,则,令,可得,即,解得,或(舍去),所以当且仅当时,取得最小值2,故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】先求出函数的值域有,再得出,从而求得反函数.【详解】由,可得由,则,所以故答案为:.12、【解析】整理代数式满足运用基本不等式结构后,用基本不等式求最小值.【详解】∵∴当且仅当,时,取最小值.故答案为:【点睛】用基本不等式求最值要注意“一正、二定、三相等”,若不能取等,则要改变求最值的方法.13、60°【解析】取BC的中点E,则,则即为所求,设棱长为2,则,14、【解析】画出函数的图像,对称轴为,函数在对称轴的位置取得最小值2,令,可求得,或,进而得到参数范围.【详解】函数的图象是开口朝上,且以直线为对称的抛物线,当时,函数取最小值2,令,则,或,若函数在上的最大值为3,最小值为2,则,故答案为:.15、【解析】设扇形的半径和弧长分别为,由题设可得,则扇形圆心角所对的弧度数是,应填答案16、【解析】先分别求出两条直线的斜率,再利用两条直线垂直的充要条件是斜率乘积等于,即可求出结果【详解】直线的斜率,直线的斜率,且两直线与互相垂直,,,解得,故答案为【点睛】本题主要考查两直线垂直的充要条件,属于基础题.在两条直线的斜率都存在的条件下,两条直线垂直的充要条件是斜率乘积等于三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解析】(1)先求集合B的补集,再与集合A取交集;(2)把“”是“”的充分条件转化为集合A与B之间的关系再求解的取值范围【小问1详解】时,,又故【小问2详解】由题意知:“”是“”的充分条件,即当时,,,满足题意;当时,,欲满足则必须解之得综上得的取值范围为或18、(1)为奇函数,证明见解析.(2).(3).【解析】(1)根据函数的奇偶性的定义可得证;(2)由(1)得出是定义域为的奇函数,再判断出是上的单调递增,进而转化为,进而可求解;(3)利用,可得到,所以,令,则,进而对二次函数对称轴讨论求得最值即可求出的值.【小问1详解】解:函数的定义域为,又,∴为奇函数.【小问2详解】解:,∵,∴,或(舍).∴单调递增.又∵为奇函数,定义域为R,∴,∴所以不等式等价于,,,∴.故的取值范围为.【小问3详解】解:,解得(舍),,令,∵,∴,,当时,,解得(舍),当时,,解得(舍),综上,.19、(1)(2)(i)证明见解析;(ii)【解析】(1)设,然后代点求解即可;(2)利用定义证明函数在区间上单调递增即可,然后可得在上,,然后可求出t的取值范围【小问1详解】设,则,得,所以【小问2详解】(i)由(1)得任取,,且,则因为,所以,,所以,即所以函数在上单调递增(ii)由(i)知在单调递增,所以在上,因为在上恒成立,所以,解得20、(1)fx=9004x+5【解析】(1)根据距离为10km时,测算宿舍建造费用为20万元,可求k的值,由此,可得f(x)的表达式;(2)fx【详解】解:(1)由题意可知,距离为10km时,测算宿舍建造费用为20万元,则20=k4×10+5,解得k(2)因为fx=9004x+5答:宿舍应建在离工厂254km处,可使总费用最小,f【点睛】利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论