江西省临川一中2021-2022学年中考数学五模试卷含解析_第1页
江西省临川一中2021-2022学年中考数学五模试卷含解析_第2页
江西省临川一中2021-2022学年中考数学五模试卷含解析_第3页
江西省临川一中2021-2022学年中考数学五模试卷含解析_第4页
江西省临川一中2021-2022学年中考数学五模试卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022中考数学模拟试卷

注意事项:

1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(共10小题,每小题3分,共30分)

1.下列由左边到右边的变形,属于因式分解的是().

A.(x+l)(x—1)=^—1

B.x2—2x+l=x(x—2)+1

C.a2—b2=(a+b)(a—b)

D.mx+my+nx+ny=)

2.如图所示图形中,不是正方体的展开图的是()

3,若一组数据2,3,4,5,”的平均数与中位数相等,则实数x的值不可能是()

A.6D.1

4.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批

电话手表全部售出,销售总额超过了5・5万元.这批电话手表至少有()

A.103块B.104块C.105块D.106块

5.下列运算正确的是()

A.-(a-1)=-a-1B.(2a3)2=4a6C.(a-b)2=a2-b2D.a3+a2=2a5

6.在数轴上表示不等式2(1-x)V4的解集,正确的是()

D.-i——

-10

7.如图,在边长为4的正方形ABCD中,E、F是AD边上的两个动点,且AE=FD,连接BE、CF、BD,CF与BD

交于点H,连接DH,下列结论正确的是()

①△ABGs/kFDG②HD平分NEHG③AG_LBE④SAHDG:SAHBG=tanNDAG⑤线段DH的最小值是2逐-2

A.①②⑤B.①③④⑤C.①②®®D.①②③④

8.甲、乙两人沿相同的路线由A地到8地匀速前进,4、8两地间的路程为2()km.他们前进的路程为s(km),甲出

发后的时间为f(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是()

O\1234t

A.甲的速度是4km/hB.乙的速度是l()km/h

C.乙比甲晚出发lhD.甲比乙晚到3地3h

9.如图所示的几何体的俯视图是()

10.如图,在已知的^ABC中,按以下步骤作图:①分别以B、C为圆心,以大于』BC的长为半径作弧,两弧相

2

交于点M、N;②作直线MN交AB于点D,连接CD,则下列结论正确的是()

A.CD+DB=ABB.CD+AD=ABC.CD+AC=ABD.AD+AC=AB

二、填空题(本大题共6个小题,每小题3分,共18分)

11.如图,从一块直径是8m的圆形铁皮上剪出一个圆心角为90。的扇形,将剪下的扇形围成一个圆锥,圆锥的高是

B

12.若a+h=2,ab--3»则代数式/h+Za%?的值为

13.如图,长方形内有两个相邻的正方形,面积分别为3和9,那么阴影部分的面积为.

14.完全相同的3个小球上面分别标有数一2、一1、1,将其放入一个不透明的盒子中后摇匀,再从中随机摸球两次(第

一次摸出球后放回摇匀),两次摸到的球上数之和是负数的概率是.

15.若分式工的值为正数,则x的取值范围___.

1-x

16.如图,在AABC中,ZC=120°,AB=4cm,两等圆。A与。B外切,则图中两个扇形的面积之和(即阴影部分)

为cm2(结果保留k).

三、解答题(共8题,共72分)

17.(8分)将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.

从中随机抽出一张牌,牌面数字是偶数的概率是,先从中随机抽出一张牌,将牌面数字

作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或

列表的方法求组成的两位数恰好是4的倍数的概率.

18.(8分)已知二次函数卜=-/+笈+。的图象如图6所示,它与x轴的一个交点坐标为(-1,0),与)'轴的交点坐

标为(0,3).求出此二次函数的解析式;根据图象,写出函数值)为正数时,自变量x的取值范围.

图8

19.(8分)如图,AB是。O的直径,D是。。上一点,点E是AC的中点,过点A作。O的切线交BD的延长线于

点F.连接AE并延长交BF于点C.

(1)求证:AB=BC;

,求FC的长.

20.(8分)地球环境问题已经成为我们日益关注的问题.学校为了普及生态环保知识,提高学生生态环境保护意识,举

办了“我参与,我环保”的知识竞赛.以下是从初一、初二两个年级随机抽取20名同学的测试成绩进行调查分析,成绩

如下:

初一:76889365789489689550

89888989779487889291

初二:74979689987469767278

99729776997499739874

(1)根据上面的数据,将下列表格补充完整;

整理、描述数据:

成绩X

人数50<x<5960<x<6970<x<7980<x<8990<x<100

班级

初一1236

初二011018

(说明:成绩90分及以上为优秀,80〜90分为良好,60〜80分为合格,60分以下为不合格)

分析数据:

年级平均数中位数众数

初一8488.5

初二84.274

(2)得出结论:

你认为哪个年级掌握生态环保知识水平较好并说明理由.(至少从两个不同的角度说明推断的合理性).

21.(8分)《杨辉算法》中有这么一道题:“直田积八百六十四步,只云长阔共六十步,问长多几何?”意思是:一块

矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多了多少步?

22.(10分)关于x的一元二次方程ax2+bx+l=l.当b=a+2时,利用根的判别式判断方程根的情况;若方程有两个相

等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.

23.(12分)先化简,再求值:(•;--~;,其中a是方程a?+a-6=0的解.

a"-4a-2tr+4a+4

24.若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”.现从1,2,3,4这四个数字中任取

3个数,组成无重复数字的三位数.

(1)请画出树状图并写出所有可能得到的三位数;

(2)甲、乙二人玩一个游戏,游戏规则是:若组成的三位数是“伞数”,则甲胜;否则乙胜.你认为这个游戏公平吗?

试说明理由.

参考答案

一、选择题(共10小题,每小题3分,共30分)

1、C

【解析】

因式分解是把一个多项式化为几个整式的积的形式,据此进行解答即可.

【详解】

解:A、B、D三个选项均不是把一个多项式化为几个整式的积的形式,故都不是因式分解,只有C选项符合因式分解

的定义,

故选择C.

【点睛】

本题考查了因式分解的定义,牢记定义是解题关键.

2、C

【解析】

由平面图形的折叠及正方形的展开图结合本题选项,一一求证解题.

【详解】

解:A、B、D都是正方体的展开图,故选项错误;

C、带“田”字格,由正方体的展开图的特征可知,不是正方体的展开图.

故选C.

【点睛】

此题考查正方形的展开图,难度不大,但是需要空间想象力才能更好的解题

3,C

【解析】

因为中位数的值与大小排列顺序有关,而此题中x的大小位置未定,故应该分类讨论x所处的所有位置情况:从小到

大(或从大到小)排列在中间;结尾;开始的位置.

【详解】

(1)将这组数据从小到大的顺序排列为2,3,4,5,x,

处于中间位置的数是4,

...中位数是4,

平均数为(2+3+4+5+x)+5,

:.4=(2+3+4+5+x)+5,

解得x=6;符合排列顺序;

(2)将这组数据从小到大的顺序排列后2,3,4,x,5,

中位数是4,

此时平均数是(2+3+4+5+x)+5=4,

解得x=6,不符合排列顺序;

(3)将这组数据从小到大的顺序排列后2,3,x,4,5,

中位数是x,

平均数(2+3+4+5+x)+5=x,

解得x=3.5,符合排列顺序;

(4)将这组数据从小到大的顺序排列后2,x,3,4,5,

中位数是3,

平均数(2+3+4+5+x)+5=3,

解得x=l,不符合排列顺序;

(5)将这组数据从小到大的顺序排列后x,2,3,4,5,

中位数是3,

平均数(2+3+4+5+x)+5=3,

解得x=l,符合排列顺序;

.lx的值为6、3.5或1.

故选C.

【点睛】

考查了确定一组数据的中位数,涉及到分类讨论思想,较难,要明确中位数的值与大小排列顺序有关,一些学生往往

对这个概念掌握不清楚,计算方法不明确而解答不完整.注意找中位数的时候一定要先排好顺序,然后再根据奇数和

偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.

4,C

【解析】

试题分析:根据题意设出未知数,列出相应的不等式,从而可以解答本题.设这批手表有x块,

550x60+(x-60)x500>55000解得,x>104二这批电话手表至少有105块

考点:一元一次不等式的应用

5、B

【解析】

根据去括号法则,积的乘方的性质,完全平方公式,合并同类项法则,对各选项分析判断后利用排除法求解.

【详解】

解:A、因为-(a-1)=-a+L故本选项错误;

B、(-2a3)2=4a6,正确;

C、因为(a-b)2=a2-2ab+b2,故本选项错误;

D、因为a3与a?不是同类项,而且是加法,不能运算,故本选项错误.

故选B.

【点睛】

本题考查了合并同类项,积的乘方,完全平方公式,理清指数的变化是解题的关键.

6、A

【解析】

根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得不等式解集,然后得出在数

轴上表示不等式的解集.2(l-x)<4

去括号得:2-2xV4

移项得:2x>-2,

系数化为1得:x>-l,

故选A.

“点睛”本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边

都乘以或除以同一个负数不等号方向要改变.

7、B

【解析】

首先证明△ABEgZ\DCF,△ADG^ACDG(SAS),△AGBg△CGB,利用全等三角形的性质,等高模型、三边关

系一一判断即可.

【详解】

解:•.•四边形ABCD是正方形,

;.AB=CD,NBAD=NADC=90。,ZADB=ZCDB=45°.

•.•在△ABE和△DCF中,AB=CD,ZBAD=ZADC,AE=DF,

/.△ABE^ADCF,

/.ZABE=ZDCF.

•.•在△ADG和△CDG中,AD=CD,ZADB=ZCDB,DG=DG,

/.△ADG^ACDG,

:.NDAG=NDCF,

.*.ZABE=ZDAG.

,.,ZDAG+ZBAH=90°,

.,.ZBAE+ZBAH=90°,

.,.ZAHB=90°,

.,.AG±BE,故③正确,

同理可证:AAGB乡ACGB.

VDF/7CB,

.".△CBG^AFDG,

.,.△ABG^AFDG,故①正确.

VSAHDG:SAHBG=DG:BG=DF:BC=DF:CD=tanZFCD,ZDAG=ZFCD,

ASAHDG:SAHBG=tanZFCD=tanZDAG,故④正确.

取AB的中点O,连接OD、OH.

由勾股定理得,OD=“2+22=2石,

由三角形的三边关系得,O、D、H三点共线时,DH最小,

DH最小=16-1.

无法证明DH平分NEHG,故②错误,

故①③④⑤正确.

故选B.

【点睛】

本题考查了相似三角形的判定与性质,全等三角形的判定与性质,正方形的性质,解直角三角形,解题的关键是掌握

它们的性质进行解题.

8、C

【解析】

甲的速度是:20+4=5km/h;

乙的速度是:204-l=20km/h;

由图象知,甲出发1小时后乙才出发,乙到2小时后甲才到,

故选C.

9、D

【解析】

找到从上面看所得到的图形即可,注意所有看到的棱都应表现在俯视图中.

【详解】

从上往下看,该几何体的俯视图与选项。所示视图一致.

故选O.

【点睛】

本题考查了简单组合体三视图的知识,俯视图是从物体的上面看得到的视图.

10、B

【解析】

作弧后可知MN_LCB,且CD=DB.

【详解】

由题意性质可知MN是BC的垂直平分线,则MN_LCB,且CD=DB,则CD+AD=AB.

【点睛】

了解中垂线的作图规则是解题的关键.

二、填空题(本大题共6个小题,每小题3分,共18分)

11、向

【解析】

分析:首先连接40,求出的长度是多少;然后求出扇形的弧长弧8c

为多少,进而求出扇形围成的圆锥的底面半径是多少;最后应用勾股定理,求出圆锥的高是多少即可.

详解:如图1,连接AO,

':AB=AC,点。是3c的中点,

:.AO±BC,

又;NB4C=90。,

AB=2s/2OB=472(m),

...弧8c的长为:=---x兀乂4夜=2及兀(,〃),

...将剪下的扇形围成的圆锥的半径是:

20714-271=x/2("0,

圆锥的高是:[(40)2—(扬2=而(租).

故答案为回.

点睛:考查圆锥的计算,正确理解圆锥的侧面展开图与原来扇形之间的关系式解决本题的关键.

12、-12

【解析】

分析:对所求代数式进行因式分解,把。+匕=2,ab=-3,代入即可求解.

详解:a+b=2,ab=—3,

aib+2a1b1+ab3=ab(a1+2ab+b~^=ab[^a+by=-3x22=-12.,

故答案为:-12.

点睛:考查代数式的求值,掌握提取公因式法和公式法进行因式分解是解题的关键.

13,1^-1

【解析】

设两个正方形的边长是x、y(xVy),得出方程》2=i,y2=%求出*=百,7=1,代入阴影部分的面积是(y-x)x

求出即可.

【详解】

设两个正方形的边长是X、y(x<j),则必=1,y2=9,x=#),y=l,则阴影部分的面积是(j-x)x=

(1-0)x百=36-1.

故答案为1G-1.

【点睛】

本题考查了二次根式的应用,主要考查学生的计算能力.

2

14、-

3

【解析】

画树状图列出所有等可能结果,从中找到能两次摸到的球上数之和是负数的结果,根据概率公式计算可得.

【详解】

解:画树状图如下:

-2-11

4AA

-2-11-2-11-2-11

由树状图可知共有9种等可能结果,其中两次摸到的球上数之和是负数的有6种结果,

所以两次摸到的球上数之和是负数的概率为|=|,

2

故答案为:

【点睛】

本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于

两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.

15、x>l

【解析】

试题解析:由题意得:

V-6<0,

Al-x<0,

c2

16、一71.

3

【解析】

图中阴影部分的面积就是两个扇形的面积,圆A,B的半径为2cm,则根据扇形面积公式可得阴影面积.

【详解】

吐/听巴―.(cmD.

3603603

2

故答案为一力.

3

考点:1、扇形的面积公式;2、两圆相外切的性质.

三、解答题(共8题,共72分)

17、(1),;(2),.

【解析】

(1)直接利用概率公式求解即可;(2)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率

公式求出该事件的概率即可.

【详解】

(1)从中随机抽出一张牌,牌面所有可能出现的结果有4种,且它们出现的可能性相等,其中出现偶数的情况有2种,

:.P(牌面是偶数)==

11

故答案为:,;

(2)根据题意,画树状图:

开始

第一次

第二次1234123412341234-

可知,共有北•种等可能的结果,其中恰好是,的倍数的共有4种,

"一(,力与的=诟=彳

【点睛】

本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于

两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.

18、(1)y=-x2+2x+3;(2)-1<x<3.

【解析】

(1)将(-1,0)和(0,3)两点代入二次函数y=-x2+bx+c,求得b和c;从而得出抛物线的解析式;

(2)令y=0,解得xi,X2,得出此二次函数的图象与x轴的另一个交点的坐标,进而求出当函数值y>0时,自变量x

的取值范围.

【详解】

解:(1)由二次函数y=-2+bx+c的图象经过(一1,0)和(0,3)两点,

—\-b+c—0

c=3

解这个方程组,得

b=2

c=3,

抛物线的解析式为y=-x2+2x+3,

(2)令y=0,W-X2+2X+3=0.

解这个方程,得\=3,x2=-l.

,此二次函数的图象与x轴的另一个交点的坐标为(3,0).

当—l<x<3时,y>0.

【点睛】

本题考查的知识点是二次函数的三种形式及待定系数法求二次函数解析式及抛物线与坐标轴的交点,解题的关键是熟

练的掌握二次函数的三种形式及待定系数法求二次函数解析式及抛物线与坐标轴的交点.

10

19、⑴见解析“2)§.

【解析】

分析:(1)由A8是直径可得BEJL4C,点E为AC的中点,可知BE垂直平分线段AC,从而结论可证;

(2)由NE4C+NC48=90。,ZCAB+ZABE=90°,可得NE4c=NA8E,从而可设AE=x,BE=2x,由勾股定理求出

AE.BE、AC的长.作C7/_LA尸于〃,可证RSAC"SRS8AC,列比例式求出“C、AH的值,再根据平行线分线

段成比例求出FH,然后利用勾股定理求出FC的值.

详解:(D证明:连接BE.

:AB是。O的直径,

:.ZAEB=90°,

ABEXAC,

而点E为AC的中点,

,BE垂直平分AC,

.*.BA=BC;

(2)解:YAF为切线,

.*.AF±AB,

VZFAC+ZCAB=90°,ZCAB+ZABE=90°,

NFAC=NABE,

.•.tanZABE=ZFAC=—,

2

AR1

在RSABE中,tanZABE=-^=—,

BE2

设AE=x,贝!JBE=2x,

,AB=,^x,即娓x=5,解得乂=我,

,AC=2AE=2&,BE=2A/5

作CHLAF于H,如图,

VZHAC=ZABE,

/.RtAACH^RtABAC,

.HC_AH_AC刖HC_AH2近

.•百翦正,即TT勾FT'

.\HC=2,AH=4,

:HC:〃AB,

.FHHC即京粤基解得FHT

"FA-ABFH+453

点睛:本题考查了圆周角定理的推论,线段垂直平分线的判定与性质,切线的性质,勾股定理,相似三角形的判定与

性质,平行线分线段成比例定理,锐角三角函数等知识点及见比设参的数学思想,得到8E垂直平分AC是解(1)的

关键,得到RtAAC”SRSR4C是解(2)的关键.

20、(1)1,2,19;(2)初一年级掌握生态环保知识水平较好.

【解析】

(1)根据初一、初二同学的测试成绩以及众数与中位数的定义即可完成表格;

(2)根据平均数、众数、中位数的统计意义回答.

【详解】

(1)补全表格如下:

整理、描述数据:

初一成绩x满足103W9的有:1119191119191711,共1个.

故答案为:L

成绩X50W%45960GW6970WxW7980WxW8990WxW100

人数

班级

初一12386

初二011018

分析数据:

在761193657194196195501911191929417119291中,19出现的次数最多,

故众数为19;

把初二的抽查成绩从小到大排列为:697272737474747476767119969797919199

9999,第10个数为76,第11个数为71,故中位数为:(76+71)4-2=2.

故答案为:19,2.

年级平均数中位数众数

初一8488.589

初二84.27774

(2)初一年级掌握生态环保知识水平较好.

因为两个年级的平均数相差不大,但是初一年级同学的中位数是11.5,众数是19,初二年级同学的中位数是2,众

数是74,即初一年级同学的中位数与众数明显高于初二年级同学的成绩,所以初一年级掌握生态环保知识水平较好.

【点睛】

本题考查了频数(率)分布表,众数、中位数以及平均数.掌握众数、中位数以及平均数的定义是解题的关键.

21、12

【解析】

设矩形的长为x步,则宽为(6()-x)步,根据题意列出方程,求出方程的解即可得到结果.

【详解】

解:设矩形的长为x步,则宽为(60-x)步,

依题意得:x(60-x)=864,

整理得:x2-60x4-864=0,

解得:x=36或x=24(不合题意,舍去),

.*.60-x=60-36=24(步),

/.36-24=12(步),

则该矩形的长比宽多12步.

【点睛】

此题考查了一元二次方程的应用,找出题中的等量关系是解本题的关键.

22、(2)方程有两个不相等的实数根;(2)b=-2,a=2时,x2=x2=-2.

【解析】

分析:(2)求出根的判别式△=〃-4ac,判断其范围,即可判断方程根的情况.

(2)方程有两个相等的实数根,则△=〃—4ac=0,写出一组满足条件的。,〃的值即可.

详解:(2)解:由题意:a00.

■:△=Zr—4ac-{a+2)——4a=〃+4

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论