版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省怒江市2023-2024学年高一数学第一学期期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.方程的实数根大约所在的区间是A. B.C. D.2.已知指数函数在上单调递增,则的值为()A.3 B.2C. D.3.若,,则等于()A. B.3C. D.4.设入射光线沿直线y=2x+1射向直线,则被反射后,反射光线所在的直线方程是A. B.C. D.5.已知集合,,若,则实数a值的集合为()A. B.C. D.6.已知直线与直线平行且与圆:相切,则直线的方程是A. B.或C. D.或7.已知幂函数的图象过点,则()A. B.C. D.8.命题“对任意x∈R,都有x2≥1”的否定是()A.对任意x∈R,都有x2<1 B.不存在x∈R,使得x2<1C.存在x∈R,使得x2≥1 D.存在x∈R,使得x2<19.小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是A. B.C. D.10.已知过点和的直线与直线平行,则的值为()A. B.0C.2 D.1011.下列函数是偶函数且在区间(–∞,0)上为减函数的是()A.y=2x B.y=C.y=x D.12.下列函数既是奇函数,又是在区间上是增函数是A. B.C. D.二、填空题(本大题共4小题,共20分)13.已知,若,则_______;若,则实数的取值范围是__________14.已知函数是定义在R上的增函数,且,那么实数a的取值范围为________15.已知幂函数的图象经过点,且满足条件,则实数的取值范围是___16.在中,,,且在上,则线段的长为______三、解答题(本大题共6小题,共70分)17.物联网(InternetofThings,缩写:IOT)是基于互联网、传统电信网等信息承载体,让所有能行使独立功能的普通物体实现互联互通的网络.其应用领域主要包括运输和物流、工业制造、健康医疗、智能环境(家庭、办公、工厂)等,具有十分广阔的市场前景.现有一家物流公司计划租地建造仓库储存货物,经过市场调查了解到下列信息:仓库每月土地占地费(单位:万元),仓库到车站的距离x(单位:千米,),其中与成反比,每月库存货物费(单位:万元)与x成正比;若在距离车站9千米处建仓库,则和分别为2万元和7.2万元.(1)求出与解析式;(2)这家公司应该把仓库建在距离车站多少千米处,才能使两项费用之和最小?最小费用是多少?18.如图,一个半径为4米的筒车按逆时针方向每分钟转1圈,筒车的轴心O距水面的高度为2米.设筒车上的某个盛水筒W到水面的距离为d(单位:米)(在水面下则d为负数).若以盛水筒W刚浮出水面时开始计算时间,则d与时间t(单位:分钟)之间的关系为.(1)求的值;(2)求盛水筒W出水后至少经过多少时间就可到达最高点?(3)某时刻(单位:分钟)时,盛水筒W在过O点的竖直直线的左侧,到水面的距离为5米,再经过分钟后,盛水筒W是否在水中?19.在平面直角坐标系中,角的顶点与坐标原点重合,始边与轴的非负半轴重合,终边与单位圆相交于点A,已知点A的纵坐标为.(1)求的值;(2)求的值.20.2020年初至今,新冠肺炎疫情袭击全球,对人民生命安全和生产生活造成严重影响.在党和政府强有力抗疫领导下,我国控制住疫情后,一方面防止境外疫情输入,另一方面逐步复工复产,减轻经济下降对企业和民众带来的损失.为降低疫情影响,某厂家拟在2022年举行某产品的促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x万件与年促销费用m万元(m≥0)满足x=4−.已知生产该产品的固定成本为8万元,生产成本为16万元/万件,厂家将产品的销售价格定为万元/万件(产品年平均成本)的1.5倍.(1)将2022年该产品的利润y万元表示为年促销费用m万元的函数;(2)该厂家2022年的促销费用投入多少万元时,厂家的利润最大?21.如图,射线、分别与轴正半轴成和角,过点作直线分别交、于、两点,当的中点恰好落在直线上时,求直线的方程22.某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x万件,其总成本为万元,其中固定成本为3万元,并且每生产1万件的生产成本为1万元(总成本=固定成本+生产成本),销售收入满足,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)写出利润函数的解析式(利润=销售收入−总成本);(2)工厂生产多少万件产品时,可使盈利最多?
参考答案一、选择题(本大题共12小题,共60分)1、C【解析】方程的根转化为函数的零点,判断函数的连续性以及单调性,然后利用零点存在性定理推出结果即可【详解】方程的根就是的零点,函数是连续函数,是增函数,又,,所以,方程根属于故选C【点睛】本题考查函数零点存在性定理的应用,考查计算能力2、B【解析】令系数为,解出的值,又函数在上单调递增,可得答案【详解】解得,又函数在上单调递增,则,故选:B3、A【解析】根据已知确定,从而求得,进而求得,根据诱导公式即求得答案.【详解】因为,,所以,则,故,故选:A4、D【解析】由可得反射点A(−1,−1),在入射光线y=2x+1上任取一点B(0,1),则点B(0,1)关于y=x的对称点C(1,0)在反射光线所在的直线上根据点A(−1,−1)和点C(1,0)坐标,利用两点式求得反射光线所在的直线方程是,化简可得x−2y−1=0.故选D.5、D【解析】,可以得到,求出集合A的子集,这样就可以求出实数值集合.【详解】,的子集有,当时,显然有;当时,;当时,;当,不存在符合题意,实数值集合为,故选:D.【点睛】本题考查了通过集合的运算结果,得出集合之间的关系,求参数问题.重点考查了一个集合的子集,本题容易忽略空集是任何集合的子集这一结论.6、D【解析】圆的圆心为,半径为,因为直线,所以,设直线的方程为,由题意得或所以,直线的方程或7、D【解析】先利用待定系数法求出幂函数的解析式,再求的值【详解】解:设,则,得,所以,所以,故选:D8、D【解析】根据含有一个量词的否定是改量词、否结论直接得出.【详解】因为含有一个量词的否定是改量词、否结论,所以命题“对任意x∈R,都有x2≥1”的否定是“存在x∈R,使得x2<1”.故选:D.【点睛】本题考查含有一个量词的否定,属于基础题.9、C【解析】开机密码的可能有,,共15种可能,所以小敏输入一次密码能够成功开机的概率是,故选C【考点】古典概型【解题反思】对古典概型必须明确两点:①对于每个随机试验来说,试验中所有可能出现基本事件只有有限个;②每个基本事件出现的可能性相等.只有在同时满足①、②的条件下,运用的古典概型计算公式(其中n是基本事件的总数,m是事件A包含的基本事件的个数)得出的结果才是正确的10、A【解析】因为过点和的直线与直线平行,所以两直线的斜率相等.【详解】解:∵直线的斜率等于,∴过点和的直线的斜率也是,,解得,故选:A.【点睛】本题考查两斜率存在的直线平行的条件是斜率相等,以及斜率公式的应用.11、C【解析】根据解析式判断各个选项中函数的奇偶性和单调性可得答案.【详解】y=2x不是偶函数;y=1y=x是偶函数,且函数在-y=-x2是二次函数,是偶函数,且在故选:C.12、A【解析】对于,函数,定义域是,有,且在区间是增函数,故正确;对于,函数的定义域是,是非奇非偶函数,故错误;对于,函数的定义域是,有,在区间不是增函数,故错误;对于,函数的定义域是,有,是偶函数不是奇函数,故错误故选A二、填空题(本大题共4小题,共20分)13、①.②.【解析】先判断函数的奇偶性,由求解;再根据函数的单调性,由求解.【详解】因为的定义域为R,且,,所以是奇函数,又,则-2;因为在上是增函数,所以在上是增函数,又是R上的奇函数,所以在R上递增,且,所以由,得,即,所以,解得或,所以实数的取值范围是,故答案为:,14、【解析】利用函数单调性的定义求解即可.【详解】由已知条件得,解得,则实数的取值范围为.故答案为:.15、【解析】首先求得函数的解析式,然后求解实数的取值范围即可.【详解】设幂函数的解析式为,由题意可得:,即幂函数的解析式为:,则即:,据此有:,求解不等式组可得实数的取值范围是.【点睛】本题主要考查幂函数的定义及其应用,属于基础题.16、1【解析】∵,∴,∴,∵且在上,∴线段为的角平分线,∴,以A为原点,如图建立平面直角坐标系,则,D∴故答案为1三、解答题(本大题共6小题,共70分)17、(1),(2)把仓库建在距离车站4千米处才能使两项费用之和最小,最小费用是7.2万元【解析】(1)设出与以及与x的解析式,将x=9的费用代入,求得答案;(2)列出两项费用之和的表达式,利用基本不等式求得其最小值,可得答案.【小问1详解】设,,其中,当时,,.解得,,所以,.【小问2详解】设两项费用之和为z(单位:万元)则,当且仅当,即时,“”成立,所以这家公司应该把仓库建在距离车站4千米处才能使两项费用之和最小,最小费用是7.2万元.18、(1);(2)分钟;(3)再经过分钟后盛水筒不在水中.【解析】(1)先结合题设条件得到,,求得,再利用初始值计算初相即可;(2)根据盛水筒达到最高点时,代入计算t值,再根据,得到最少时间即可;(3)先计算时,根据题意,利用同角三角函数的平方关系求,再由分钟后,进而计算d值并判断正负,即得结果.【详解】解:(1)由题意知,,即,所以,由题意半径为4米,筒车的轴心O距水面的高度为2米,可得:,当时,,代入得,,因为,所以;(2)由(1)知:,盛水筒达到最高点时,,当时,,所以,所以,解得,因为,所以,当时,,所以盛水筒出水后至少经过分钟就可达到最高点;(3)由题知:,即,由题意,盛水筒W在过O点的竖直直线的左侧,知,所以,所以,所以,再经过分钟后,所以再经过分钟后盛水筒不在水中.【点睛】本题的解题关键在于准确求解出三角函数模型的解析式,才能利用三角函数性质解决实际问题,突破难点.19、(1)(2)【解析】(1)根据点A的纵坐标,可求得点A的横坐标,根据正切函数的定义,即可得答案.(2)利用诱导公式进行化简,结合(1)即可得答案.【小问1详解】因为点A纵坐标为,且点A在第二象限,所以点A的横坐标为,所以;【小问2详解】由诱导公式可得:.20、(1)(2)3万元【解析】(1)依据题意列出该产品的利润y万元关于年促销费用m万元的解析式即可;(2)依据均值定理即可求得促销费用投入3万元时,厂家的利润最大.【小问1详解】由题意知,每万件产品的销售价格为(万元),x=4−则2022年的利润【小问2详解】∵当时,,∴,(当且仅当时等号成立)∴,当且仅当万元时,(万元)故该厂家2022年的促销费用投入3万元时,厂家的利润最大为29万元21、【解析】先求出、所在的直线方程,根据直线方程分别设A、B点坐标,进而求出的中点C的坐标,利用点C在直线上以及A、B、P三点共线列关系式解出B点坐标,从而求出直线AB的斜率,然后代入点斜式方程化简即可.【详解】解:由题意可得,,所以直线,设,,所以的中点由点在上,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 说课模板及框架图
- 人教部编版四年级语文上册第20课《陀螺》精美课件
- 算法设计与分析 课件 5.5.1-动态规划应用-矩阵连乘-问题描述和分析
- 2024年伊春客运从业资格证理论考试题
- 2024年呼和浩特客运资格考试考题题库答案
- 2024年河池客运资格证考试试题模拟
- 吉首大学《教师综合素质强化》2021-2022学年第一学期期末试卷
- 吉首大学《程序设计基础实验》2021-2022学年期末试卷
- 《机床夹具设计》试卷22
- 吉林艺术学院《艺术专题策划》2021-2022学年第一学期期末试卷
- 拌混凝土拌合站管理办法
- 文明如厕讲卫生PPT课件
- 新员工轮岗实习鉴定表
- 在京中央和国家机关住房交易办公室
- 深圳市政府合同管理若干规定
- 2022年高考数学必刷压轴题专题03函数的奇偶性对称性周期性₍含解析₎
- 十四五粮食行业规划
- 钣金与焊接工艺规范
- 最新X线诊断报告模板(干货分享)
- 华东理工大学PPT模板
- 一年级上册语文期中考试试卷分析
评论
0/150
提交评论