吉林省白城市洮南第十中学2024届数学高一第二学期期末质量检测模拟试题含解析_第1页
吉林省白城市洮南第十中学2024届数学高一第二学期期末质量检测模拟试题含解析_第2页
吉林省白城市洮南第十中学2024届数学高一第二学期期末质量检测模拟试题含解析_第3页
吉林省白城市洮南第十中学2024届数学高一第二学期期末质量检测模拟试题含解析_第4页
吉林省白城市洮南第十中学2024届数学高一第二学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省白城市洮南第十中学2024届数学高一第二学期期末质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,正方体的棱长为,那么四棱锥的体积是()A.B.C.D.2.如下图,在四棱锥中,平面ABCD,,,,则异面直线PA与BC所成角的余弦值为()A. B. C. D.3.已知是不共线的非零向量,,,,则四边形是()A.梯形 B.平行四边形 C.矩形 D.菱形4.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1500石,验得米内夹谷,抽样取米一把,数得250粒内夹谷30粒,则这批米内夹谷约为多少石?A.180 B.160 C.90 D.3605.设,且,则下列各不等式中恒成立的是()A. B. C. D.6.已知曲线,如何变换可得到曲线()A.把上各点的横坐标伸长到原来的倍,再向右平移个单位长度B.把上各点的横坐标伸长到原来的倍,再向左平移个单位长度C.把上各点的横坐标缩短到原来的倍,再向右平移个单位长度D.把上各点的横坐标缩短到原来的倍,再向左平移个单位长度7.各棱长均为的三棱锥的表面积为()A. B. C. D.8.已知某几何体的三视图是如图所示的三个直角三角形,则该几何体的外接球的表面积为()A.17π B.34π C.51π D.68π9.如图,网格纸上小正方形的边长均为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A.34 B.42 C.54 D.7210.函数()的部分图象如图所示,若,且,则()A.1 B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.过点作圆的切线,则切线的方程为_____.12.在数列{}中,,则____.13.在高一某班的元旦文艺晚会中,有这么一个游戏:一盒子内装有6张大小和形状完全相同的卡片,每张卡片上写有一个成语,它们分别为意气风发、风平浪静、心猿意马、信马由缰、气壮山河、信口开河,从盒内随机抽取2张卡片,若这2张卡片上的2个成语有相同的字就中奖,则该游戏的中奖率为________.14.某射手的一次射击中,射中10环、9环、8环的概率分别为0.2、0.3、0.1,则此射手在一次射击中不超过8环的概率为_________.15.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________.16.某扇形的面积为1,它的周长为4cm,那么扇形的圆心角的大小为____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆关于直线对称,半径为,且圆心在第一象限.(Ⅰ)求圆的方程;(Ⅱ)若直线与圆相交于不同两点、,且,求实数的值.18.在锐角中角,,的对边分别是,,,且.(1)求角的大小;(2)若,求面积的最大值.19.在中,角所对的边分别为,,,,为的中点.(1)求的长;(2)求的值.20.在平面直角坐标系xOy中,曲线与x轴交于不同的两点A,B,曲线Γ与y轴交于点C.(1)是否存在以AB为直径的圆过点C?若存在,求出该圆的方程;若不存在,请说明理由;(2)求证:过A,B,C三点的圆过定点,并求出该定点的坐标.21.已知,(1)求;(2)求;(3)求

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】

根据锥体体积公式,求得四棱锥的体积.【题目详解】根据正方体的几何性质可知平面,所以,故选B.【题目点拨】本小题主要考查四棱锥体积的计算,属于基础题.2、B【解题分析】

作出异面直线PA与BC所成角,结合三角形的知识可求.【题目详解】取的中点,连接,如图,因为,,所以四边形是平行四边形,所以;所以或其补角是异面直线PA与BC所成角;设,则,;因为,所以;因为平面ABCD,所以,在三角形中,.故选:B.【题目点拨】本题主要考查异面直线所成角的求解,作出异面直线所成角,结合三角形知识可求.侧重考查直观想象的核心素养.3、A【解题分析】

本题首先可以根据向量的运算得出,然后根据以及向量平行的相关性质即可得出四边形的形状.【题目详解】因为,所以,因为,是不共线的非零向量,所以且,所以四边形是梯形,故选A.【题目点拨】本题考查根据向量的相关性质来判断四边形的形状,考查向量的运算以及向量平行的相关性质,如果一组对边平行且不相等,那么四边形是梯形;如果对边平行且相等,那么四边形是平行四边形;相邻两边长度相等的平行四边形是菱形;相邻两边垂直的平行四边形是矩形,是简单题.4、A【解题分析】

根据数得250粒内夹谷30粒,根据比例,即可求得结论。【题目详解】设批米内夹谷约为x石,则,解得:选A。【题目点拨】此题考查简单随机抽样,根据部分的比重计算整体值。5、D【解题分析】

根据不等式的性质,逐项检验,即可判断结果.【题目详解】对于选项A,若,显然不成立;对于选项B,若,显然不成立;对于选项C,若,显然不成立;对于选项D,因为,所以,故正确.故选:D.【题目点拨】本题考查了不等式的性质,属于基础题.6、D【解题分析】

用诱导公式把两个函数名称化为相同,然后再按三角函数图象变换的概念判断.【题目详解】,∴可把的图象上各点的横坐标缩短到原来的倍,再向左平移个单位长度或先向左平移个单位,再把图象上各点的横坐标缩短到原来的倍(纵坐标不变)可得的图象,故选:D.【题目点拨】本题考查三角函数的图象变换,解题时首先需要函数的前后名称相同,其次平移变换与周期变换的顺序不同时,平移的单位有区别.向左平移个单位所得图象的函数式为,而不是.7、C【解题分析】

判断三棱锥是正四面体,它的表面积就是四个三角形的面积,求出一个三角形的面积即可求解本题.【题目详解】由题意可知三棱锥是正四面体,各个三角形的边长为a,三棱锥的表面积就是四个全等三角形的面积,即,

所以C选项是正确的.【题目点拨】本题考查棱锥的表面积,考查空间想象能力,计算能力,是基础题.8、B【解题分析】

由三视图还原出原几何体,得几何体的结构(特别是垂直关系),从而确定其外接球球心位置,得球半径.【题目详解】由三视图知原几何体是三棱锥,如图,平面,平面.由这两个线面垂直,得,因此的中点到四顶点的距离相等,即为外接球球心.由三视图得,,∴.故选:B.【题目点拨】本题考查三棱锥外接球表面积,考查三视图.解题关键是由三视图还原出原几何体,确定几何体的结构,找到外接球球心.9、C【解题分析】

还原几何体得四棱锥E﹣ABCD,由图中数据利用椎体的体积公式求解即可.【题目详解】依三视图知该几何体为四棱锥E﹣ABCD,如图,ABCD是直角梯形,是棱长为6的正方体的一部分,梯形的面积为:12几何体的体积为:13故选:C.【题目点拨】本题考查三视图求几何体的体积,由三视图正确还原几何体和补形是解题的关键,考查空间想象能力.10、D【解题分析】

由三角函数的图象求得,再根据三角函数的图象与性质,即可求解.【题目详解】由图象可知,,即,所以,即,又因为,则,解得,又由,所以,所以,又因为,所以图中的最高点坐标为.结合图象和已知条件可知,所以,故选D.【题目点拨】本题主要考查了由三角函数的部分图象求解函数的解析式,以及三角函数的图象与性质的应用,其中解答中熟记三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、或【解题分析】

求出圆的圆心与半径分别为:,,分别设出直线斜率存在与不存在情况下的直线方程,利用点到直线的距离等于半径即可得到答案.【题目详解】由圆的一般方程得到圆的圆心和半径分别为;,;(1)当过点的切线斜率不存在时,切线方程为:,此时圆心到直线的距离,故不与圆相切,不满足题意;(2)当过点的切线的斜率存在时,设切线方程为:,即为;由于直线与圆相切,所以圆心到切线的距离等于半径,即,解得:或,所以切线的方程为或;综述所述:切线的方程或【题目点拨】本题考查过圆外一点求圆的切线方程,解题关键是设出切线方程,利用圆心到切线的距离等于半径得到关系式,属于中档题.12、1【解题分析】

直接利用等比数列的通项公式得答案.【题目详解】解:在等比数列中,由,公比,得.故答案为:1.【题目点拨】本题考查等比数列的通项公式,是基础题.13、【解题分析】

先列举出总的基本事件,在找出其中有2个成语有相同的字的基本事件个数,进而可得中奖率.【题目详解】解:先观察成语中的相同的字,用字母来代替这些字,气—A,风—B,马—C,信—D,河—E,意—F,用ABF,B,CF,CD,AE,DE分别表示成语意气风发、风平浪静、心猿意马、信马由缰、气壮山河、信口开河,则从盒内随机抽取2张卡片有共15个基本事件,其中有相同字的有共6个基本事件,该游戏的中奖率为,故答案为:.【题目点拨】本题考查古典概型的概率问题,关键是要将符合条件的基本事件列出,是基础题.14、0.5【解题分析】

由互斥事件的概率加法求出射手在一次射击中超过8环的概率,再利用对立事件的概率求出不超过8环的概率即可.【题目详解】由题意,射中10环、9环、8环的概率分别为0.2、0.3、0.1,所以射手的一次射击中超过8环的概率为:0.2+0.3=0.5故射手的一次射击中不超过8环的概率为:1-0.5=0.5故答案为0.5【题目点拨】本题主要考查了对立事件的概率,属于基础题.15、1.98.【解题分析】

本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【题目详解】由题意得,经停该高铁站的列车正点数约为,其中高铁个数为11+21+11=41,所以该站所有高铁平均正点率约为.【题目点拨】本题考点为概率统计,渗透了数据处理和数学运算素养.侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.16、【解题分析】

根据扇形的面积和周长列方程组解得半径和弧长,再利用弧长公式可求得结果.【题目详解】设扇形的半径为,弧长为,圆心角为,则,解得,所以.故答案为:【题目点拨】本题考查了扇形的面积公式,考查了扇形中弧长公式,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【解题分析】

(Ⅰ)由题得和,解方程即得圆的方程;(Ⅱ)取的中点,则,化简得,即得m的值.【题目详解】(Ⅰ)由,得圆的圆心为,圆关于直线对称,①.圆的半径为,②又圆心在第一象限,,,由①②解得,,故圆的方程为.(Ⅱ)取的中点,则,,,即,又,解得.【题目点拨】本题主要考查圆的方程的求法,考查直线和圆的位置关系和向量的运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.18、(1)(2)【解题分析】

(1)由正弦定理可得,结合,可求出与;(2)由余弦定理可得,结合基本不等式可得,即可求出,从而可求出的最大值.【题目详解】解:(1)因为,所以,又,所以,又是锐角三角形,则.(2)因为,,,所以,所以,即(当且仅当时取等号),故.【题目点拨】本题考查了正弦定理、余弦定理在解三角形中的运用,考查了利用基本不等式求最值,考查了学生的计算能力,属于中档题.19、(1).(2)【解题分析】

(1)在中分别利用余弦定理完成求解;(2)在中利用正弦定理求解的值.【题目详解】解:(1)在中,由余弦定理得,∴,解得∵为的中点,∴.在中,由余弦定理得,∴.(2)在中,由正弦定理得,∴.【题目点拨】本题考查解三角形中的正余弦定理的运用,难度较易.对于给定图形的解三角形问题,一定要注意去结合图形去分析.20、(1)存在,(2)证明见解析,圆方程恒过定点或【解题分析】

(1)将曲线Γ方程中的y=1,得x2﹣mx+2m=1.利用韦达定理求出C,通过坐标化,求出m得到所求圆的方程.(2)设过A,B,C的圆P的方程为(x﹣a)2+(y﹣b)2=r2列出方程组利用圆系方程,推出圆P方程恒过定点即可.【题目详解】由曲线Γ:y=x2﹣mx+2m(m∈R),令y=1,得x2﹣mx+2m=1.设A(x1,1),B(x2,1),则可得△=m2﹣8m>1,x1+x2=m,x1x2=2m.令x=1,得y=2m,即C(1,2m).(1)若存在以AB为直径的圆过点C,则,得,即2m+4m2=1,所以m=1或.由△>1,得m<1或m>8,所以,此时C(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论