江西省赣州市会昌县2024届数学高一第二学期期末学业水平测试试题含解析_第1页
江西省赣州市会昌县2024届数学高一第二学期期末学业水平测试试题含解析_第2页
江西省赣州市会昌县2024届数学高一第二学期期末学业水平测试试题含解析_第3页
江西省赣州市会昌县2024届数学高一第二学期期末学业水平测试试题含解析_第4页
江西省赣州市会昌县2024届数学高一第二学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省赣州市会昌县2024届数学高一第二学期期末学业水平测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.“是第二象限角”是“是钝角”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既不充分也不必要2.已知圆(为圆心,且在第一象限)经过,,且为直角三角形,则圆的方程为()A. B.C. D.3.下图来自古希腊数学家希波克拉底所研究的平面几何图形.此图由两个圆构成,O为大圆圆心,线段AB为小圆直径.△AOB的三边所围成的区域记为I,黑色月牙部分记为Ⅱ,两小月牙之和(斜线部分)部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A. B. C. D.4.如图,在长方体中,,,,分别是,的中点则异面直线与所成角的余弦值为()A. B. C. D.5.掷两颗均匀的骰子,则点数之和为5的概率等于()A. B. C. D.6.已知,则下列不等式一定成立的是()A. B. C. D.7.袋中有个大小相同的小球,其中个白球,个红球,个黑球,现在从中任意取一个,则取出的球恰好是红色或者黑色小球的概率为()A. B. C. D.8.如果全集,,则()A. B. C. D.9.一个几何体的三视图如图所示,则该几何体的体积为()A.10 B.20 C.30 D.6010.我国古代数学名著《九章算术》第六章“均输”中有这样一个问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何.”(注:“均输”即按比例分配,此处是指五人所得成等差数列;“钱”是古代的一种计量单位),则分得最少的一个得到()A.钱 B.钱 C.钱 D.1钱二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列满足,,,则__________.12.底面边长为,高为的直三棱柱形容器内放置一气球,使气球充气且尽可能的膨胀(保持球的形状),则气球表面积的最大值为_______.13.如图,曲线上的点与轴的正半轴上的点及原点构成一系列正三角形,,,设正三角形的边长为(记为),.数列的通项公式=______.14.若圆:与圆:相交于,两点,且两圆在点处的切线互相垂直,则公共弦的长度是______.15.抽样调查某地区名教师的年龄和学历状况,情况如下饼图:则估计该地区岁以下具有研究生学历的教师百分比为_______.16.已知等比数列an中,a3=2,a三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知关于直线对称,且圆心在轴上.(1)求的标准方程;(2)已知动点在直线上,过点引的两条切线、,切点分别为.①记四边形的面积为,求的最小值;②证明直线恒过定点.18.如图,长方形材料中,已知,.点为材料内部一点,于,于,且,.现要在长方形材料中裁剪出四边形材料,满足,点、分别在边,上.(1)设,试将四边形材料的面积表示为的函数,并指明的取值范围;(2)试确定点在上的位置,使得四边形材料的面积最小,并求出其最小值.19.已知向量.(1)若,且,求实数的值;(2)若,且与的夹角为,求实数的值.20.已知,,分别为三个内角,,的对边,.(1)求角的大小;(2)若,的面积为,求边,.21.某高中非毕业班学生人数分布情况如下表,为了了解这2000个学生的体重情况,从中随机抽取160个学生并测量其体重数据,根据测量数据制作了下图所示的频率分布直方图.(1)为了使抽取的160个样品更具代表性,宜采取分层抽样,请你给出一个你认为合适的分层抽样方案,并确定每层应抽取的样品个数;(2)根据频率分布直方图,求的值,并估计全体非毕业班学生中体重在内的人数;(3)已知高一全体学生的平均体重为,高二全体学生的平均体重为,试估计全体非毕业班学生的平均体重.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】

由α是钝角可得α是第二象限角,反之不成立,则答案可求.【题目详解】若α是钝角,则α是第二象限角;反之,若α是第二象限角,α不一定是钝角,如α=﹣210°.∴“α是第二象限角”是“α是钝角”的必要非充分条件.故选B.【题目点拨】本题考查钝角、象限角的概念,考查了充分必要条件的判断方法,是基础题.2、D【解题分析】

设且,半径为,根据题意列出方程组,求得的值,即可求解.【题目详解】依题意,圆经过点,可设且,半径为,则,解得,所以圆的方程为.【题目点拨】本题主要考查了圆的标准方程的求解,其中解答中熟记圆的标准方程的形式,以及合理应用圆的性质是解答的关键,着重考查了运算与求解能力,属于基础题.3、D【解题分析】

设OA=1,则AB,分别求出三个区域的面积,由测度比是面积比得答案.【题目详解】设OA=1,则AB,,以AB中点为圆心的半圆的面积为,以O为圆心的大圆面积的四分之一为,以AB为弦的大圆的劣弧所对弓形的面积为π﹣1,黑色月牙部分的面积为π﹣(π﹣1)=1,图Ⅲ部分的面积为π﹣1.设整个图形的面积为S,则p1,p1,p3.∴p1=p1>p3,故选D.【题目点拨】本题考查几何概型概率的求法,考查数形结合的解题思想方法,正确求出各部分面积是关键,是中档题.4、A【解题分析】

连结,由,可知异面直线与所成角是,分别求出,然后利用余弦定理可求出答案.【题目详解】连结,因为,所以异面直线与所成角是,在中,,,,所以.故选A.【题目点拨】本题考查了异面直线的夹角,考查了利用余弦定理求角,考查了计算能力,属于中档题.5、B【解题分析】

试题分析:掷两颗均匀的骰子,共有36种基本事件,点数之和为5的事件有(1,4),(2,3),(3,2),(4,1)这四种,因此所求概率为,选B.考点:概率问题6、C【解题分析】试题分析:若,那么,A错;,B错;是单调递减函数当时,所以,C.正确;是减函数,所以,故选C.考点:不等式7、D【解题分析】

利用古典概型的概率公式可计算出所求事件的概率.【题目详解】从袋中个球中任取一个球,取出的球恰好是一个红色或黑色小球的基本事件数为,因此,取出的球恰好是红色或者黑色小球的概率为,故选D.【题目点拨】本题考查古典概型概率的计算,解题时要确定出全部基本事件数和所求事件所包含的基本事件数,并利用古典概型的概率公式进行计算,考查计算能力,属于基础题.8、C【解题分析】

首先确定集合U,然后求解补集即可.【题目详解】由题意可得:,结合补集的定义可知.本题选择C选项.【题目点拨】本题主要考查集合的表示方法,补集的定义等知识,意在考查学生的转化能力和计算求解能力.9、B【解题分析】

由三视图可知几何体为四棱锥,利用四棱锥体积公式可求得结果.【题目详解】由三视图可知,该几何体为底面为长为,宽为的长方形,高为的四棱锥四棱锥体积本题正确选项:【题目点拨】本题考查根据三视图求解几何体体积的问题,关键是能够通过三视图将几何体还原为四棱锥,从而利用棱锥体积公式来进行求解.10、B【解题分析】

设所成等差数列的首项为,公差为,利用等差数列前项和公式及通项公式列出方程组,求出首项和公差,进而得出答案.【题目详解】由题意五人所分钱成等差数列,设得钱最多的为,则公差.所以,则.又,即则,分得最少的一个得到.故选:B【题目点拨】本题考查了等差数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、-2【解题分析】

根据题干中所给的表达式得到数列的周期性,进而得到结果.【题目详解】根据题干表达式得到可以得数列具有周期性,周期为3,故得到故得到故答案为:-2.【题目点拨】这个题目考查了求数列中的某些项,一般方法是求出数列通项,对于数列通项不容易求的题目,可以列出数列的一些项,得到数列的周期或者一些其它规律,进而得到数列中的项.12、【解题分析】由题意,气球充气且尽可能地膨胀时,气球的半径为底面三角形内切圆的半径

∵底面三角形的边长分别为,∴底面三角形的边长为直角三角形,利用等面积可求得∴气球表面积为4π.13、【解题分析】

先得出直线的方程为,与曲线的方程联立得出的坐标,可得出,并设,根据题中条件找出数列的递推关系式,结合递推关系式选择作差法求出数列的通项公式,即利用求出数列的通项公式。【题目详解】设数列的前项和为,则点的坐标为,易知直线的方程为,与曲线的方程联立,解得,;当时,点、,所以,点,直线的斜率为,则,即,等式两边平方并整理得,可得,以上两式相减得,即,易知,所以,即,所以,数列是等差数列,且首项为,公差也为,因此,.故答案为:。【题目点拨】本题考查数列通项的求解,根据已知条件找出数列的递推关系是解题的关键,在求通项公式时需结合递推公式的结构选择合适的方法求解数列的通项公式,考查分析问题的能力,属于难题。14、【解题分析】

根据两圆在点处的切线互相垂直,得出是直角三角形,求出,然后两圆相减求出公共弦的直线方程,运用点到直线的距离公式求出圆心到公共弦的距离,进而求出公共弦长.【题目详解】由题意,圆圆心坐标,半径,圆圆心坐标,半径,因为两圆相交于点,且两圆在点处的切线互相垂直,所以是直角三角形,,所以,由两点间距离公式,,所以,解得,所以圆:,两圆方程相减,得,即,所以公共弦:,圆心到公共弦的距离,故公共弦长故答案为:【题目点拨】本题主要考查两圆公共弦的方程、圆弦长的求法和点到直线的距离公式,考查学生的分析能力,属于基础题.15、【解题分析】

根据饼状图中的岁以下本科学历人数和占比可求得岁以下教师总人数,从而可得其中的具有研究生学历的教师人数,进而得到所求的百分比.【题目详解】由岁以下本科学历人数和占比可知,岁以下教师总人数为:人岁以下有研究生学历的教师人数为:人岁以下有研究生学历的教师的百分比为:本题正确结果:【题目点拨】本题考查利用饼状图计算总体中的数据分布和频率分布的问题,属于基础题.16、4【解题分析】

先计算a5【题目详解】aaa故答案为4【题目点拨】本题考查了等比数列的计算,意在考查学生的计算能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)①②证明见解析【解题分析】

(1)根据圆的一般式,可得圆心坐标,将圆心坐标代入直线方程,结合圆心在轴上,即可求得圆C的标准方程.(2)①根据切线性质及切线长定理,表示出的长,根据圆的性质可知当最小时,即可求得面积的最小值;②设出M点坐标,根据两条切线可知M、A、C、B四点共圆,可得圆心坐标及半径,进而求得的方程,根据两个圆公共弦所在直线方程求法即可得直线方程,进而求得过的定点坐标.【题目详解】(1)由题意知,圆心在直线上,即,又因为圆心在轴上,所以,由以上两式得:,,所以.故的标准方程为.(2)①如图,的圆心为,半径,因为、是的两条切线,所以,,故又因为,根据平面几何知识,要使最小,只要最小即可.易知,当点坐标为时,.此时.②设点的坐标为,因为,所以、、、四点共圆.其圆心为线段的中点,,设所在的圆为,所以的方程为:,化简得:,因为是和的公共弦,所以,两式相减得,故方程为:,当时,,所以直线恒过定点.【题目点拨】本题考查了圆的一般方程与标准方程的应用,圆中三角形面积问题的应用,直线过定点问题,综合性强,属于难题.18、(1)见解析;(2)当时,四边形材料的面积最小,最小值为.【解题分析】分析:(1)通过直角三角形的边角关系,得出和,进而得出四边形材料的面积的表达式,再结合已知尺寸条件,确定角的范围.(2)根据正切的两角差公式和换元法,化简和整理函数表达式,最后由基本不等式,确定面积最小值及对应的点在上的位置.详解:解:(1)在直角中,因为,,所以,所以,在直角中,因为,,所以,所以,所以,.(2)因为,令,由,得,所以,当且仅当时,即时等号成立,此时,,,答:当时,四边形材料的面积最小,最小值为.点睛:本题考查三角函数的实际应用,解题时要认真审题,注意挖掘题设中的隐含条件,合理地进行等价转化,注意换元法和基本不等式的合理运用.换元法求函数的值域,通过引入新变量(辅助式,辅助函数等),把所有分散的已知条件联系起来,将已知条件和要求的结果结合起来,把隐藏在条件中的性质显现出来,或把繁琐的表达式简化,之后就可以利用各种常见的函数的图象和性质或基本不等式来解决问题.常见的换元方法有代数和三角代换两种.要特别注意原函数的自变量与新函数自变量之间的关系.19、(1);(2).【解题分析】

(1)根据平面向量加法和数乘的坐标表示公式、数量积的坐标表示公式,结合两个互相垂直的平面向量数量积为零,进行求解即可;(2)利用平面向量夹角公式进行求解即可.【题目详解】(1)当时,.因为,所以;(2)当时,所以有,因为与的夹角为,所以有.【题目点拨】本题考查了平面向量运算的坐标表示公式,考查了平面向量夹角公式,考查了数学运算能力.20、(1);(2).【解题分析】

(1)利用正弦定理化边为角,再依据两角和的正弦公式以及诱导公式,即可求出,进而求得角A的大小:(2)依第一问结果,先由三角形面积公式求出,再利用余弦定理求出,联立即可求解出,的值.【题目详解】(1)由及正弦定理得,整理得,,,因为,且,所以,,又,所以,.(2)因为的面积,所以,①由余弦定理得,,所以,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论