![2024届天津市静海区瀛海学校高一数学第二学期期末达标检测试题含解析_第1页](http://file4.renrendoc.com/view10/M01/18/07/wKhkGWWmqmyAGr2UAAGwe8UoxeY275.jpg)
![2024届天津市静海区瀛海学校高一数学第二学期期末达标检测试题含解析_第2页](http://file4.renrendoc.com/view10/M01/18/07/wKhkGWWmqmyAGr2UAAGwe8UoxeY2752.jpg)
![2024届天津市静海区瀛海学校高一数学第二学期期末达标检测试题含解析_第3页](http://file4.renrendoc.com/view10/M01/18/07/wKhkGWWmqmyAGr2UAAGwe8UoxeY2753.jpg)
![2024届天津市静海区瀛海学校高一数学第二学期期末达标检测试题含解析_第4页](http://file4.renrendoc.com/view10/M01/18/07/wKhkGWWmqmyAGr2UAAGwe8UoxeY2754.jpg)
![2024届天津市静海区瀛海学校高一数学第二学期期末达标检测试题含解析_第5页](http://file4.renrendoc.com/view10/M01/18/07/wKhkGWWmqmyAGr2UAAGwe8UoxeY2755.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届天津市静海区瀛海学校高一数学第二学期期末达标检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某市家庭煤气的使用量和煤气费(元)满足关系,已知某家庭今年前三个月的煤气费如下表:月份用气量煤气费一月份元二月份元三月份元若四月份该家庭使用了的煤气,则其煤气费为()元A. B. C. D.2.在长方体中,,,则直线与平面所成角的正弦值为()A. B. C. D.3.若函数局部图象如图所示,则函数的解析式为A. B.C. D.4.如图,,下列等式中成立的是()A. B.C. D.5.某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.6.已知a,b,c为△ABC的三个内角A,B,C的对边,向量=,=(cosA,sinA),若与夹角为,则acosB+bcosA=csinC,则角B等于()A. B. C. D.7.在中,角A,B,C所对的边分别为a,b,c,,,,则等于()A. B. C. D.18.已知圆:关于直线对称的圆为圆:,则直线的方程为A. B. C. D.9.已知等差数列中,,则()A. B.C. D.10.如果数列的前项和为,那么数列的通项公式是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若数列满足,且对于任意的,都有,则___;数列前10项的和____.12.已知,为锐角,且,则__________.13.设是等差数列的前项和,若,则________14.已知数列满足则的最小值为__________.15.已知向量,,且,点在圆上,则等于.16.已知角的顶点在坐标原点,始边与轴正半轴重合,终边经过点,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列满足,.(1)求证:数列是等比数列;(2)求数列的通项公式.18.已知函数.(1)求函数的最小正周期;(2)求在区间上的最大值和最小值.19.某企业用180万元购买一套新设备,该套设备预计平均每年能给企业带来100万元的收入,为了维护设备的正常运行,第一年需要各种维护费用10万元,且从第二年开始,每年比上一年所需的维护费用要增加10万元(1)求该设备给企业带来的总利润(万元)与使用年数的函数关系;(2)试计算这套设备使用多少年,可使年平均利润最大?年平均利润最大为多少万元?20.如图,在四棱锥P‐ABCD中,四边形ABCD为正方形,PA⊥平面ABCD,E为PD的中点.求证:(1)PB∥平面AEC;(2)平面PCD⊥平面PAD.21.设数列满足.(1)求的通项公式;(2)求数列的前项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】由题意得:C=4,将(25,14),(35,19)代入f(x)=4+B(x﹣A),得:∴A=5,B=,故x=20时:f(20)=4+(20﹣5)=11.5.故选:C.点睛:这是函数的实际应用题型,根据题目中的条件和已知点得到分段函数的未知量的值,首先得到函数表达式,再根据题意让求自变量为20时的函数值,求出即可。实际应用题型,一般是先根据题意构建模型,列出表达式,根据条件求解问题即可。2、D【解题分析】
由题意,由于图形中已经出现了两两垂直的三条直线,所以可以利用空间向量的方法求解直线与平面所成的夹角.【题目详解】解:以点为坐标原点,以所在的直线为轴、轴、轴,建立空间直角坐标系,
则,
为平面的一个法向量.
.
∴直线与平面所成角的正弦值为.故选:D.【题目点拨】此题重点考查了利用空间向量,抓住直线与平面所成的角与该直线的方向向量与平面的法向量的夹角之间的关系,利用向量方法解决立体几何问题.3、D【解题分析】
由的部分图象可求得A,T,从而可得,再由,结合的范围可求得,从而可得答案.【题目详解】,;又由图象可得:,可得:,,,.,,又,当时,可得:,此时,可得:故选D.【题目点拨】本题考查由的部分图象确定函数解析式,常用五点法求得的值,属于中档题.4、B【解题分析】
本题首先可结合向量减法的三角形法则对已知条件中的进行化简,化简为然后化简并代入即可得出答案.【题目详解】因为,所以,所以,即,故选B.【题目点拨】本题考查的知识点是平面向量的基本定理,考查向量减法的三角形法则,考查数形结合思想与化归思想,是简单题.5、C【解题分析】
通过三视图可以判断这一个是半个圆柱与半个圆锥形成的组合体,利用圆柱和圆锥的体积公式可以求出这个组合体的体积.【题目详解】该几何体为半个圆柱与半个圆锥形成的组合体,故,故选C.【题目点拨】本题考查了利用三视图求组合体图形的体积,考查了运算能力和空间想象能力.6、B【解题分析】
根据向量夹角求得角的度数,再利用正弦定理求得即得解.【题目详解】由已知得:所以所以由正弦定理得:所以又因为所以因为所以所以故选B.【题目点拨】本题考查向量的数量积和正弦定理,属于中档题.7、D【解题分析】
根据题意,由正弦定理得,再把,,代入求解.【题目详解】由正弦定理,得,所以.故选:D【题目点拨】本题主要考查了正弦定理的应用,还考查了运算求解的能力,属于基础题.8、A【解题分析】
根据对称性,求得,求得圆的圆心坐标,再根据直线l为线段C1C2的垂直平分线,求得直线的斜率,即可求解,得到答案.【题目详解】由题意,圆的方程,可化为,根据对称性,可得:,解得:或(舍去,此时半径的平方小于0,不符合题意),此时C1(0,0),C2(-1,2),直线C1C2的斜率为:,由圆C1和圆C2关于直线l对称可知:直线l为线段C1C2的垂直平分线,所以,解得,直线l又经过线段C1C2的中点(,1),所以直线l的方程为:,化简得:,故选A【题目点拨】本题主要考查了圆与圆的位置关系的应用,其中解答中熟记两圆的位置关系,合理应用圆对称性是解答本题的关键,其中着重考查了推理与运算能力,属于基础题.9、C【解题分析】
,.故选C.10、D【解题分析】
利用计算即可.【题目详解】当时,当时,即,故数列为等比数列则因为,所以故选:D【题目点拨】本题主要考查了已知来求,关键是利用来求解,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、,【解题分析】试题分析:由得由得,所以数列为等比数列,因此考点:等比数列通项与和项12、【解题分析】
由题意求得,再利用两角和的正切公式求得的值,可得的值.【题目详解】,为锐角,且,即,.再结合,则,故答案为.【题目点拨】本题主要考查两角和的正切公式的应用,属于基础题.13、5【解题分析】
由等差数列的前和公式,求得,再结合等差数列的性质,即可求解.【题目详解】由题意,根据等差数列的前和公式,可得,解得,又由等差数列的性质,可得.故答案为:.【题目点拨】本题主要考查了等差数列的性质,以及等差数列的前和公式的应用,其中解答中熟记等差数列的性质,以及合理应用等差数列的前和公式求解是解答的关键,着重考查了推理与运算能力,属于基础题.14、【解题分析】
先利用累加法求出an=1+n2﹣n,所以,设f(n),由此能导出n=5或6时f(n)有最小值.借此能得到的最小值.【题目详解】解:∵an+1﹣an=2n,∴当n≥2时,an=(an﹣an﹣1)+(an﹣1﹣an﹣2)+…+(a2﹣a1)+a1=2[1+2+…+(n﹣1)]+1=n2﹣n+1且对n=1也适合,所以an=n2﹣n+1.从而设f(n),令f′(n),则f(n)在上是单调递增,在上是递减的,因为n∈N+,所以当n=5或6时f(n)有最小值.又因为,,所以的最小值为故答案为【题目点拨】本题考查了利用递推公式求数列的通项公式,考查了累加法.还考查函数的思想,构造函数利用导数判断函数单调性.15、【解题分析】试题分析:因为且在圆上,所以,解得,所以.考点:向量运算.【思路点晴】平面向量的数量积计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用.利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.列出方程组求解未知数.16、【解题分析】
利用三角函数的定义可求出的值.【题目详解】由三角函数的定义可得,故答案为.【题目点拨】本题考查利用三角函数的定义求余弦值,解题的关键就是三角函数定义的应用,考查计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解题分析】
(1)利用数列的递推公式证明出为非零常数,即可证明出数列是等比数列;(2)确定等比数列的首项和公比,求出数列的通项公式,即可求出.【题目详解】(1),,因此,数列是等比数列;(2)由于,所以,数列是以为首项,以为公比的等比数列,,因此,.【题目点拨】本题考查等比数列的证明,同时也考查了数列通项的求解,考查推理能力与计算能力,属于中等题.18、(1);(2),.【解题分析】
(1)利用二倍角余弦、正弦公式以及辅助角公式将函数的解析式化简,然后利用周期公式可计算出函数的最小正周期;(2)由计算出的取值范围,然后利用正弦函数的性质可得出函数在区间上的最大值和最小值.【题目详解】(1),因此,函数的最小正周期为;(2),,当时,函数取得最小值;当时,函数取得最大值.【题目点拨】本题考查三角函数周期和最值的计算,同时也考查了利用二倍角公式以及辅助角公式化简,在求解三角函数在定区间上的最值问题时,首先应计算出对象角的取值范围,结合同名三角函数的基本性质来计算,考查分析问题和解决问题的能力,属于中等题.19、(1),(2)这套设备使用6年,可使年平均利润最大,最大利润为35万元【解题分析】
(1)运用等差数列前项和公式可以求出年的维护费,这样可以由题意可以求出该设备给企业带来的总利润(万元)与使用年数的函数关系;(2)利用基本不等式可以求出年平均利润最大值.【题目详解】解:(1)由题意知,年总收入为万元年维护总费用为万元.∴总利润,即,(2)年平均利润为∵,∴当且仅当,即时取“”∴答:这套设备使用6年,可使年平均利润最大,最大利润为35万元.【题目点拨】本题考查了应用数学知识解决生活实际问题的能力,考查了基本不等式的应用,考查了数学建模能力,考查了数学运算能力.20、(1)详证见解析;(2)详证见解析.【解题分析】
(1)可通过连接交于,通过中位线证明和平行得证平面.(2)可通过正方形得证,通过平面得证,然后通过线面垂直得证面面垂直.【题目详解】(1)证明:连交于O,因为四边形是正方形,所以,连,则是三角形的中位线,,平面,平面所以平面.(2)因为平面,所以,因为是正方形,所以,所以平面,所以平面平面.【题目点拨】证明线面平行可通过线线平行得证,证明面面垂直可通过线面垂直得证.21、(1);(1).【解题分析】
(1)在中,将代得:,由两式作商得:,问题得解.(1)利用(1)中结果求得,分组求和,再利用等差数列前项和公式及乘公比错位相减法分别求和即可得解.【题目详解】(1)由n=1得,因为,当n≥1时,,由两式作商得:(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 金融科技下知识产权融资的实践与探索
- 个人住房抵押贷款合同
- 中外双方进出口合同范本
- 二手房全款交易合同范本
- 个人租赁仓储空间的合同范本
- 中外合作研发合同范本(人工智能)
- 专业技术人才培养合作合同
- 产业投资合作协议合同模板
- 主要农作物新品种推广合同示范文本
- 个人与合作方仓储运输合同例文
- 大庆市2025届高三年级第二次教学质量检测(二模)政治试卷(含答案)
- 企业员工信息安全意识培训
- 《学前儿童文学与绘本阅读》课程教学大纲
- 2025届高考化学 二轮复习 专题五 离子共存(含解析)
- 2024年中国智能电磁炉市场调查研究报告
- 湖北十堰燃气事故案例分析资料
- 医疗纠纷处理及防范技巧与案例分析 课件
- 三级综合医院全科医疗科设置基本标准
- 《上消化道出血教案》课件
- 合理使用手机 做自律好少年-合理使用手机主题班会(课件)
- 湖南财政经济学院《运筹学》2022-2023学年第一学期期末试卷
评论
0/150
提交评论