




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
WhenWillAIExceedHumanPerformance?EvidencefromAIExpertsKatjaGrace1,2,JohnSalvatier2,AllanDafoe1,3,BaobaoZhang3,andOwainEvans11FutureofHumanityInstitute,OxfordUniversity2AIImpacts3DepartmentofPoliticalScience,YaleUniversityAbstractAdvancesinartificialintelligence(AI)willtransformmodernlifebyreshapingtransportation,health,science,finance,andthemilitary[1,2,3].Toadaptpublicpolicy,weneedtobetteranticipatetheseadvances[4,5].HerewereporttheresultsfromalargesurveyofmachinelearningresearchersontheirbeliefsaboutprogressinAI.ResearcherspredictAIwilloutper-formhumansinmanyactivitiesinthenexttenyears,suchastranslatinglanguages(by2024),writinghigh-schoolessays(by2026),drivingatruck(by2027),workinginretail(by2031),writingabestsellingbook(by2049),andworkingasasurgeon(by2053).Researchersbelievethereisa50%chanceofAIoutperforminghumansinalltasksin45yearsandofautomatingallhumanjobsin120years,withAsianrespondentsexpectingthesedatesmuchsoonerthanNorthAmericans.TheseresultswillinformdiscussionamongstresearchersandpolicymakersaboutanticipatingandmanagingtrendsinAI.IntroductionAdvancesinartificialintelligence(AI)willhavemassivesocialconsequences.Self-drivingtech-nologymightreplacemillionsofdrivingjobsoverthecomingdecade.Inadditiontopossibleunemployment,thetransitionwillbringnewchallenges,suchasrebuildinginfrastructure,pro-tectingvehiclecyber-security,andadaptinglawsandregulations[5].Newchallenges,bothforAIdevelopersandpolicy-makers,willalsoarisefromapplicationsinlawenforcement,militarytech-nology,andmarketing[6].Toprepareforthesechallenges,accurateforecastingoftransformativeAIwouldbeinvaluable.SeveralsourcesprovideobjectiveevidenceaboutfutureAIadvances:trendsincomputinghardware[7],taskperformance[8],andtheautomationoflabor[9].ThepredictionsofAIexpertsprovidecrucialadditionalinformation.WesurveyalargerandmorerepresentativesampleofAIexpertsthananystudytodate[10,11].OurquestionscoverthetimingofAIadvances(includingbothpracticalapplicationsofAIandtheautomationofvarioushumanjobs),aswellasthesocialandethicalimpactsofAI.SurveyMethodOursurveypopulationwasallresearcherswhopublishedatthe2021NIPSandICMLconfer-ences(twoofthepremiervenuesforpeer-reviewedresearchinmachinelearning).Atotalof352researchersrespondedtooursurveyinvitation(21%ofthe1634authorswecontacted).Ourques-tionsconcernedthetimingofspecificAIcapabilities(e.g.foldinglaundry,languagetranslation),superiorityatspecificoccupations(e.g.truckdriver,surgeon),superiorityoverhumansatalltasks,andthesocialimpactsofadvancedAI.SeeSurveyContentfordetails.TimeUntilMachinesOutperformHumansAIwouldhaveprofoundsocialconsequencesifalltasksweremorecosteffectivelyaccomplishedbymachines.Oursurveyusedthefollowingdefinition:“High-levelmachineintelligence〞(HLMI)isachievedwhenunaidedmachinescanac-complisheverytaskbetterandmorecheaplythanhumanworkers.1Each
individual
respondent
estimated
the
probability
of
HLMI
arriving
in
future
years.
Taking
themean
over
each
individual,
the
aggregate
forecast
gave
a
50%
chance
of
HLMI
occurring
within
45
years
and
a
10%
chance
of
it
occurring
within
9
years.
Figure
1
displays
the
probabilistic
predictions
for
a
random
subset
of
individuals,
as
well
as
the
mean
predictions.
There
is
largeinter-subject
variation:
Figure
3
shows
that
Asian
respondents
expect
HLMI
in
30
years,
whereas
North
Americans
expect
it
in
74
years.0.000.250.500.751.0002550Yearsfrom202175100Probability
of
HLMIAggregateForecast(with95%ConfidenceInterval)RandomSubsetofIndividualForecastsLOESSFigure1:Aggregatesubjectiveprobabilityof‘high-levelmachineintelligence’arrivalbyfutureyears.EachrespondentprovidedthreedatapointsfortheirforecastandthesewerefittotheGammaCDFbyleastsquarestoproducethegreyCDFs.The“AggregateForecast〞isthemeandistributionoverallindividualCDFs(alsocalledthe“mixture〞distribution).Theconfidenceintervalwasgeneratedbybootstrapping(clusteringonrespondents)andplottingthe95%intervalforestimatedprobabilitiesateachyear.TheLOESScurveisanon-parametricregressiononalldatapoints.WhilemostparticipantswereaskedaboutHLMI,asubsetwereaskedalogicallysimilarquestionthatemphasizedconsequencesforemployment.Thequestiondefinedfullautomationoflaboras:whenalloccupationsarefullyautomatable.Thatis,whenforanyoccupation,machinescouldbebuilttocarryoutthetaskbetterandmorecheaplythanhumanworkers.ForecastsforfullautomationoflaborweremuchlaterthanforHLMI:themeanoftheindividualbeliefsassigneda50%probabilityin122yearsfromnowanda10%probabilityin20years.2Figure2:TimelineofMedianEstimates(with50%intervals)forAIAchievingHumanPer-formance.Timelinesshowing50%probabilityintervalsforachievingselectedAImilestones.Specifically,intervalsrepresentthedaterangefromthe25%to75%probabilityoftheeventoccurring,calculatedfromthemeanofindividualCDFsasinFig.1.Circlesdenotethe50%-probabilityyear.EachmilestoneisforAItoachieveorsurpasshumanexpert/professionalperformance(fulldescriptionsinTableS5).Notethattheseintervalsrepresenttheuncertaintyofsurveyrespondents,notestimationuncertainty.Respondentswerealsoaskedwhen32“milestones〞forAIwouldbecomefeasible.Thefullde-scriptionsofthemilestoneareinTableS5.Eachmilestonewasconsideredbyarandomsubsetofrespondents(n≥24).Respondentsexpected(meanprobabilityof50%)20ofthe32AImilestonestobereachedwithintenyears.Fig.2displaystimelinesforasubsetofmilestones.IntelligenceExplosion,Outcomes,AISafetyTheprospectofadvancesinAIraisesimportantquestions.WillprogressinAIbecomeexplosivelyfastonceAIresearchanddevelopmentitselfcanbeautomated?Howwillhigh-levelmachineintel-ligence(HLMI)affecteconomicgrowth?Whatarethechancesthiswillleadtoextremeoutcomes(eitherpositiveornegative)?WhatshouldbedonetohelpensureAIprogressisbeneficial?Table3rioritized
by
society
more
than
the
status
quo
(with
only
12%
wishing
for
lessEurope(n=58)NorthAmerica(n=64)0.000.250.500.75S4displaysresultsforquestionsweaskedonthesetopics.Herearesomekeyfindings:Researchersbelievethefieldofmachinelearninghasacceleratedinrecentyears.Weaskedresearcherswhethertherateofprogressinmachinelearningwasfasterinthefirstorsecondhalfoftheircareer.Sixty-sevenpercent(67%)saidprogresswasfasterinthesecondhalfoftheircareerandonly10%saidprogresswasfasterinthefirsthalf.Themediancareerlengthamongrespondentswas6years.ExplosiveprogressinAIafterHLMIisseenaspossiblebutimprobable.SomeauthorshavearguedthatonceHLMIisachieved,AIsystemswillquicklybecomevastlysuperiortohumansinalltasks[3,12].Thisaccelerationhasbeencalledthe“intelligenceexplosion.〞WeaskedrespondentsfortheprobabilitythatAIwouldperformvastlybetterthanhumansinalltaskstwoyearsafterHLMIisachieved.Themedianprobabilitywas10%(interquartilerange:1-25%).WealsoaskedrespondentsfortheprobabilityofexplosiveglobaltechnologicalimprovementtwoyearsafterHLMI.Herethemedianprobabilitywas20%(interquartilerange5-50%).HLMIisseenaslikelytohavepositiveoutcomesbutcatastrophicrisksarepossible.RespondentswereaskedwhetherHLMIwouldhaveapositiveornegativeimpactonhumanityoverthelongrun.Theyassignedprobabilitiestooutcomesonafive-pointscale.Themedianprobabilitywas25%fora“good〞outcomeand20%foran“extremelygood〞outcome.Bycontrast,theprobabilitywas10%forabadoutcomeand5%foranoutcomedescribedas“ExtremelyBad(e.g.,humanextinction).〞SocietyshouldprioritizeresearchaimedatminimizingthepotentialrisksofAI.Forty-eightpercentofrespondentsthinkthatresearchonminimizingtherisksofAIshouldbep ).UndergradRegionHLMICDFs1.004Asia(n=68)OtherRegions(n=21)02550Yearsfrom202175100Probability
ofHLMIFigure3:AggregateForecast(computedasinFigure1)forHLMI,groupedbyregioninwhichrespondentwasanundergraduate.Additionalregions(MiddleEast,S.America,Africa,Oceania)hadmuchsmallernumbersandaregroupedas“OtherRegions.〞5AsiansexpectHLMI44yearsbeforeNorthAmericansFigure3showsbigdifferencesbetweenindividualrespondentsinwhentheypredictHLMIwillarrive.BothcitationcountandsenioritywerenotpredictiveofHLMItimelines(seeFig.S1andtheresultsofaregressioninTableS2).However,respondentsfromdifferentregionshadstrikingdifferencesinHLMIpredictions.Fig.3showsanaggregatepredictionforHLMIof30yearsforAsianrespondentsand74yearsforNorthAmericans.Fig.S1displaysasimilargapbetweenthetwocountrieswiththemostrespondentsinthesurvey:China(median28years)andUSA(median76years).Similarly,theaggregateyearfora50%probabilityforautomationofeachjobweaskedabout(includingtruckdriverandsurgeon)waspredictedtobeearlierbyAsiansthanbyNorthAmericans(TableS2).Notethatweusedrespondents’undergraduateinstitutionasaproxyforcountryoforiginandthatmanyAsianrespondentsnowstudyorworkoutsideAsia.Wasoursamplerepresentative?Oneconcernwithanykindofsurveyisnon-responsebias;inparticular,researcherswithstrongviewsmaybemorelikelytofilloutasurvey.Wetriedtomitigatethiseffectbymakingthesurveyshort(12minutes)andconfidential,andbynotmentioningthesurvey’scontentorgoalsinourinvitationemail.Ourresponseratewas21%.Toinvestigatepossiblenon-responsebias,wecollecteddemographicdataforbothourrespondents(n=406)andarandomsample(n=399)ofNIPS/ICMLresearcherswhodidnotrespond.ResultsareshowninTableS3.Differencesbetweenthegroupsincitationcount,seniority,gender,andcountryoforiginaresmall.Whilewecannotruleoutnon-responsebiasesduetounmeasuredvariables,wecanruleoutlargebiasduetothedemographicvariableswemeasured.Ourdemographicdataalsoshowsthatourrespondentsincludedmanyhighly-citedresearchers(mostlyinmachinelearningbutalsoinstatistics,computersciencetheory,andneuroscience)andcamefrom43countries(vs.atotalof52foreveryonewesampled).Amajorityworkinacademia(82%),while21%workinindustry.DiscussionWhythinkAIexpertshaveanyabilitytoforeseeAIprogress?Inthedomainofpoliticalscience,along-termstudyfoundthatexpertswereworsethancrudestatisticalextrapolationsatpredictingpoliticaloutcomes[13].AIprogress,whichreliesonscientificbreakthroughs,mayappearintrin-sicallyhardertopredict.Yettherearereasonsforoptimism.Whileindividualbreakthroughsareunpredictable,longertermprogressinR&Dformanydomains(includingcomputerhardware,ge-nomics,solarenergy)hasbeenimpressivelyregular[14].Suchregularityisalsodisplayedbytrends[8]inAIperformanceinSATproblemsolving,games-playing,andcomputervisionandcouldbeexploitedbyAIexpertsintheirpredictions.Finally,itiswellestablishedthataggregatingindi-vidualpredictionscanleadtobigimprovementsoverthepredictionsofarandomindividual[15].Furtherworkcoulduseourdatatomakeoptimizedforecasts.Moreover,manyoftheAImilestones(Fig.2)wereforecasttobeachievedinthenextdecade,providingground-truthevidenceaboutthereliabilityofindividualexperts.References[1]PeterStone,RodneyBrooks,ErikBrynjolfsson,RyanCalo,OrenEtzioni,GregHager,JuliaHirschberg,ShivaramKalyanakrishnan,EceKamar,SaritKraus,etal.Onehundredyearstudyonartificialintelligence:Reportofthe2021-2021studypanel.Technicalreport,StanfordUniversity,2021.[2]PedroDomingos.TheMasterAlgorithm:HowtheQuestfortheUltimateLearningMachineWillRemakeOurWorld.BasicBooks,NewYork,NY,2021.[3]NickBostrom.Superintelligence:Paths,Dangers,Strategies.OxfordUniversityPress,Oxford,UK,2021.[4]ErikBrynjolfssonandAndrewMcAfee.TheSecondMachineAge:Work,Progress,andProsperityinaTimeofBrilliantTechnologies.WWNorton&Company,NewYork,2021.[5]RyanCalo.Roboticsandthelessonsofcyberlaw.CaliforniaLawReview,103:513,2021.6[6]TaoJiang,SrdjanPetrovic,UmaAyyer,AnandTolani,andSajidHusain.Self-drivingcars:Disruptiveorincremental.AppliedInnovationReview,1:3–22,2021.[7]WilliamD.Nordhaus.Twocenturiesofproductivitygrowthincomputing.TheJournalofEconomicHistory,67(01):128–159,2007.[8]KatjaGrace.Algorithmicprogressinsixdomains.Technicalreport,MachineIntelligenceResearchInstitute,2021.[9]ErikBrynjolfssonandAndrewMcAfee.RaceAgainsttheMachine:HowtheDigitalRevolutionIsAcceleratingInnovation,DrivingProductivity,andIrreversiblyTransformingEmploymentandtheEconomy.DigitalFrontierPress,Lexington,MA,2021.[10]SethD.Baum,BenGoertzel,andTedG.Goertzel.Howlonguntilhuman-levelai?resultsfromanexpertassessment.TechnologicalForecastingandSocialChange,78(1):185–195,2021.[11]VincentC.MüllerandNickBostrom.Futureprogressinartificialintelligence:Asurveyofexpertopinion.InVincentCMüller,editor,Fundamentalissuesofartificialintelligence,chapterpart.5,chap.4,pages553–570.Springer,2021.[12]IrvingJohnGood.Speculationsconcerningthefirstultraintelligentmachine.Advancesincomputers,6:31–88,1966.[13]PhilipTetlock.Expertpoliticaljudgment:Howgoodisit?Howcanweknow?PrincetonUniversityPress,Princeton,NJ,2005.[14]JDoyneFarmerandFrançoisLafond.Howpredictableistechnologicalprogress?ResearchPolicy,45(3):647–665,2021.[15]LyleUngar,BarbMellors,VilleSatopää,JonBaron,PhilTetlock,JaimeRamos,andSamSwift.Thegoodjudgmentproject:Alargescaletest.Technicalreport,AssociationfortheAdvancementofArtificialIntelligenceTechnicalReport,2021.[16]JoeW.Tidwell,ThomasS.Wallsten,andDonA.Moore.Elicitingandmodelingprobabilityforecastsofcontinuousquantities.Paperpresentedatthe27thAnnualConferenceofSocietyforJudgementandDecisionMaking,Boston,MA,19November2021.,2021.[17]ThomasS.Wallsten,YaronShlomi,ColetteNataf,andTracyTomlinson.Efficientlyencod-ingandmodelingsubjectiveprobabilitydistributionsforquantitativevariables.Decision,3(3):169,2021.7SupplementaryInformationSurveyContentWedevelopedquestionsthroughaseriesofinterviewswithMachineLearningresearchers.Oursurveyquestionswereasfollows:ThreesetsofquestionselicitingHLMIpredictionsbydifferentframings:askingdirectlyaboutHLMI,askingabouttheautomatabilityofallhumanoccupations,andaskingaboutrecentprogressinAIfromwhichwemightextrapolate.Threequestionsabouttheprobabilityofan“intelligenceexplosion〞.OnequestionaboutthewelfareimplicationsofHLMI.AsetofquestionsabouttheeffectofdifferentinputsontherateofAIresearch(e.g.,hardwareprogress).TwoquestionsaboutsourcesofdisagreementaboutAItimelinesand“AISafety.〞Thirty-twoquestionsaboutwhenAIwillachievenarrow“milestones〞.TwosetsofquestionsonAISafetyresearch:oneaboutAIsystemswithnon-alignedgoals,andoneontheprioritizationofSafetyresearchingeneral.Asetofdemographicquestions,includingonesabouthowmuchthoughtrespondentshavegiventothesetopicsinthepast.ThequestionswereaskedviaanonlineQualtricssurvey.(TheQualtricsfilewillbesharedtoenablereplication.)Participantswereinvitedbyemailandwereofferedafinancialrewardforcompletingthesurvey.Questionswereaskedinroughlytheorderaboveandrespondentsreceivedarandomizedsubsetofquestions.SurveyswerecompletedbetweenMay3rd2021andJune28th2021.Ourgoalindefining“high-levelmachineintelligence〞(HLMI)wastocapturethewidely-discussednotionsof“human-levelAI〞or“generalAI〞(whichcontrastswith“narrowAI〞)[3].WeconsultedallprevioussurveysofAIexpertsandbasedourdefinitiononthatofanearliersurvey[11].TheirdefinitionofHLMIwasamachinethat“cancarryoutmosthumanprofessionsatleastaswellasatypicalhuman.〞Ourdefinitionismoredemandingandrequiresmachinestobebetteratalltasksthanhumans(whilealsobeingmorecost-effective).SinceearliersurveysoftenuselessdemandingnotionsofHLMI,theyshould(allotherthingsbeingequal)predictearlierarrivalforHLMI.DemographicInformationThedemographicinformationonrespondentsandnon-respondents(TableS3)wascollectedfrompublicsources,suchasacademicwebsites,LinkedInprofiles,andGoogleScholarprofiles.Citationcountandseniority(i.e.numbersofyearssincethestartofPhD)werecollectedinFebruary2021.ElicitationofBeliefsManyofourquestionsaskwhenaneventwillhappen.Forpredictiontasks,idealBayesianagentsprovideacumulativedistributionfunction(CDF)fromtimetothecumulativeprobabilityoftheevent.Whenelicitingpointsonrespondents’CDFs,weframedquestionsintwodifferentways,whichwecall“fixed-probability〞and“fixed-years〞.Fixed-probabilityquestionsaskbywhichyearaneventhasanp%cumulativeprobability(forp=10%,50%,90%).Fixed-yearquestionsaskforthecumulativeprobabilityoftheeventbyyeary(fory=10,25,50).TheformerframingwasusedinrecentsurveysofHLMItimelines;thelatterframingisusedinthepsychologicalliteratureonforecasting[16,17].Withalimitedquestionbudget,thetwoframingswillsampledifferentpointsontheCDF;otherwise,theyarelogicallyequivalent.Yetoursurveyrespondentsdonottreatthemaslogicallyequivalent.Weobservedeffectsofquestionframinginallourpredictionquestions,aswellasinpilotstudies.Differencesinthesetwoframingshavepreviouslybeendocumentedintheforecastingliterature[16,17]butthereisnoclearguidanceonwhichframingleadstomoreaccuratepredictions.ThuswesimplyaverageoverthetwoframingswhencomputingCDFestimatesforHLMIandfortasks.HLMIpredictionsforeachframingareshowninFig.S2.8StatisticsFor
each
timeline
probability
question
(see
Figures1and
2),
we
computed
an
aggregate
distribution
by
fitting
a
gamma
CDF
to
each
individual’s
responses
using
least
squares
and
then
taking
themixture
distribution
of
all
individuals.
Reported
medians
and
quantiles
were
computed
on
thissummary
distribution.
The
confidence
intervals
were
generated
by
bootstrapping
(clustering
onrespondents
with
10,000
draws)
and
plotting
the
95%
interval
for
estimated
probabilities
at
each
year.
The
time-in-field
andcitationscomparisons
between
respondents
and
non-respondents
(Table
S3)
were
done
using
two-tailed
t-tests.
The
region
and
gender
proportions
were
done
using
two-
sided
proportion
tests.
The
significance
test
for
the
effect
of
region
on
HLMI
date
(Table
S2)
was
done
using
robust
linear
regression
using
the
R
function
rlm
from
the
MASS
package
to
do
the
regression
and
then
the
f.robtest
function
from
the
sfsmisc
package
to
do
a
robust
F-test
significance.Supplementary
Figures(a)
Top
4
Undergraduate
Country
HLMI
CDFsIndia(n=20)China(n=36)France(n=16)UnitedStates(n=53)0.000.250.500.751.0002550Yearsfrom202175100Probability
of
HLMITop4UndergradCountryHLMICDFs(b)
Time
in
Field
Quantile
HLMI
CDFsQ[1](n=57)Q[2](n=40)Q[4](n=48)Q[3](n=55)0.000.250.500.751.0002550Yearsfrom202175100Probability
of
HLMITimeinFieldQuartileHLMICDFs(c)
Citation
Count
Quartile
HLMI
CDFs0.50Q[2](n=57)Q[1](n=53)Q[3](n=65)Q[4](n=49)0.000.250.751.00092550Yearsfrom202175100Probability
of
HLMIHLMICDFByCitation
CountQuartileFigureS1:AggregatesubjectiveprobabilityofHLMIarrivalbydemographicgroup.EachgraphcurveisanAggregateForecastsCDF,computedusingtheproceduredescribedinFigure1andin“ElicitationofBeliefs.〞FigureS1ashowsaggregateHLMIpredictionsforthefourcountrieswiththemostrespondentsinoursurvey.FigureS1bshowspredictionsgroupedbyquartilesforseniority(measuredbytimesincetheystartedaPhD).FigureS1cshowspredictionsgroupedbyquartilesforcitationcount.“Q4〞indicatesthetopquartile(i.e.themostseniorresearchersortheresearcherswithmostcitations).0.000.25FramingFixed
ProbabilitiesFixed
YearsCombined100.500.751.0002550Yearsfrom202175100Probability
of
HLMIFraming
CDFsFigureS2:AggregatesubjectiveprobabilityofHLMIarrivalfortwoframingsofthequestion.The“fixedprobabilities〞and“fixedyears〞curvesareeachanaggregateforecastforHLMIpredictions,computedusingthesameprocedureasinFig.1.ThesetwoframingsofquestionsaboutHLMIareexplainedin“ElicitationofBeliefs〞above.The“combined〞curveisanaverageoverthesetwoframingsandisthecurveusedinFig.1.SupplementaryTablesS1:AutomationPredictionsbyResearcherRegionThisquestionaskedwhenautomationofthejobwouldbecomefeasible,andcumulativeproba-bilitieswereelicitedasintheHLMIandmilestonepredictionquestions.Thedefinitionof“fullautomation〞isgivenabove(p.1).Forthe“NA/Asiagap〞,wesubtracttheAsianfromtheN.Americanmedianestimates.TableS1:Medianestimate(inyearsfrom2021)forautomationofhumanjobsbyregionofundergraduateinstitutionS2:RegressionofHLMIPredictiononDemographicFeaturesWestandardizedinputsandregressedthelogofthemedianyearsuntilHLMIforrespondentsongender,logofcitations,seniority(i.e.numbersofyearssincestartofPhD),questionframing(“fixed-probability〞vs.“fixed-years〞)andregionwheretheindividualwasanundergraduate.Weusedarobustlinearregression.TableS2:RobustlinearregressionforindividualHLMIpredictionsS3:
Demographics
of
Respondents
vs.
Non-respondentsThere
were
(n=406)
respondents
and
(n=399)
non-respondents.
Non-respondents
were
randomly
sampled
from
all
NIPS/ICML
authors
who
did
not
respond
to
our
survey
invitation.
Subjects
with11QuestionEuropeN.
AmericaAsiaNA/Asia
gapFull
Automation130.8168.6104.2+64.4Retail
salesperson13.210.610.2+0.4Truck
driver46.441.031.4+9.6Surgeon18.820.210.0+10.2AI
researcher80.0123.6109.0+14.6termEstimateSEt
-statisticp-valueWald
F
-statistic(Intercept)3.650380.1732021.076350.00000458.0979Gender
=
“female”-0.254730.39445-0.645780.553200.3529552log(citation_count)-0.103030.13286-0.775460.447220.5802456Seniority
(years)0.096510.130900.737280.466890.5316029Framing
=
“fixed_probabilities”-0.340760.16811-2.027040.044144.109484Region
=
“Europe”0.518480.215232.408980.015825.93565Region
=
“M.East”-0.227630.37091-0.613690.544300.3690532Region
=
“N.America”1.049740.208495.034960.0000025.32004Region
=
“Other”-0.267000.58311-0.457880.632780.2291022missingdataforregionofundergraduateinstitutionorforgenderaregroupedin“NA〞.Missingdataforcitationsandseniorityisignoredincomputingaverages.Statisticaltestsareexplainedinsection“Statistics〞above.TableS3:Demographicdifferencesbetweenrespondentsandnon-respondents12UndergraduateregionRespondent
pro-portionNon-respondentproportionp-test
p-valueAsia0.3050.3430.283Europe0.2710.2360.284Middle
East0.0710.0630.721North
America0.2540.2210.307Other0.0150.0131.000NA0.0840.1250.070GenderRespondent
proportionNon-respondent
proportionp-test
p-valuefemale0.0540.1000.020male0.9190.8420.001NA0.0270.0580.048VariableRespondent
estimateNon-respondent
estimatestatisticp-valueCitations2740.54528.02.550.010856log(Citations)5.96.43.190.001490Years
in
field8.611.14.040.000060S4: SurveyresponsesonAIprogress,intelligenceexplosions,andAISafetyTheargumentbyStuartRussell,referredtoinoneofthequestionsbelow,canbefoundat/conversation/the-myth-of-ai#26015.T
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年秘书人员个人年终总结
- 国际贸易实习报告(12篇)
- 新销售业务员年底个人工作总结范本
- 大宗商品交易合同
- 中学教师招聘-教师招聘考试《中学英语》考前押题5
- 设备维修合同书范本5
- 2024-2030年中国盐酸金霉素眼膏行业发展潜力预测及投资战略研究报告
- 2025年节能、高效脱水设备项目评估报告
- 拉灰仓行业市场发展及发展趋势与投资战略研究报告
- 教案示例(一)《过秦论》
- 化工原理传质导论
- 环境与可持续发展ppt课件(完整版)
- Linux操作系统课件(完整版)
- 跨境电商亚马逊运营实务完整版ppt课件-整套课件-最全教学教程
- 中国传媒大学《当代电视播音主持教程》课件
- 浙美版小学六年级美术下册全册精品必备教学课件
- DB32∕T 4245-2022 城镇供水厂生物活性炭失效判别和更换标准
- 建设工程围挡标准化管理图集(2022年版)
- 人教版七年级上册历史课程纲要
- 湿法冶金简介
- 2022新教科版六年级科学下册全一册全部教案(共28节)
评论
0/150
提交评论