福建省三明市尤溪县普通高中2024届数学高一第二学期期末监测模拟试题含解析_第1页
福建省三明市尤溪县普通高中2024届数学高一第二学期期末监测模拟试题含解析_第2页
福建省三明市尤溪县普通高中2024届数学高一第二学期期末监测模拟试题含解析_第3页
福建省三明市尤溪县普通高中2024届数学高一第二学期期末监测模拟试题含解析_第4页
福建省三明市尤溪县普通高中2024届数学高一第二学期期末监测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省三明市尤溪县普通高中2024届数学高一第二学期期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知圆锥的侧面展开图是一个半径为6,圆心角为的扇形,则圆锥的高为()A. B. C. D.52.若抛物线上一点到焦点的距离是该点到轴距离的3倍,则()A. B. C. D.73.圆锥的高和底面半径之比,且圆锥的体积,则圆锥的表面积为()A. B. C. D.4.若实数x,y满足条件,则目标函数z=2x-y的最小值()A. B.-1 C.0 D.25.截一个几何体,各个截面都是圆面,则这个几何体一定是()A.圆柱 B.圆锥 C.球 D.圆台6.过两点A,B(,的直线倾斜角是,则的值是()A.B.3C.1D.7.在ΔABC中,角A,B,C的对边分别为a,b,c,若sinA4a=A.-45 B.35 C.8.若,则下列不等式中不正确的是()A. B. C. D.9.在中,内角,,的对边分别为,,,且=.则A. B. C. D.10.己知关于的不等式解集为,则突数的取值范围为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,下列说法:①图像关于对称;②的最小正周期为;③在区间上单调递减;④图像关于中心对称;⑤的最小正周期为;正确的是________.12.过抛物线的焦点F的直线交抛物线于A、B两点,则________.13.函数y=sin2x+2sin2x的最小正周期T为_______.14.设为虚数单位,复数的模为______.15.已知,,则的值为.16.在等比数列中,若,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在平面四边形中,,,,,.(1)求的长;(2)求的长.18.已知数列的前n项和为,满足:.(1)证明:数列是等比数列;(2)令,,求数列的前n项和.19.从代号为A、B、C、D、E的5个人中任选2人(1)列出所有可能的结果;(2)若A、B、C三人为男性,D、E两人为女性,求选出的2人中不全为男性的概率.20.已知公差不为零的等差数列{an}和等比数列{bn}满足:a1=b1=3,b2=a4,且a1,a4,a13成等比数列.(1)求数列{an}和{bn}的通项公式;(2)令cn=an•bn,求数列{cn}的前n项和Sn.21.已知向量,函数,且当,时,的最小值为.(1)求的值,并求的单调递增区间;(2)先将函数的图象上所有点的横坐标缩小到原来的倍(纵坐标不变),再将所得图象向右平移个单位,得到函数的图象,求方程在区间上所有根之和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】

利用扇形的弧长为底面圆的周长求出后可求高.【题目详解】因为侧面展开图是一个半径为6,圆心角为的扇形,所以圆锥的母线长为6,设其底面半径为,则,所以,所以圆锥的高为,选C【题目点拨】圆锥的侧面展开图是扇形,如果圆锥的母线长为,底面圆的半径长为,则该扇形的圆心角的弧度数为.2、A【解题分析】由题意,焦点坐标,所以,解得,故选A。3、D【解题分析】

根据圆锥的体积求出底面圆的半径和高,求出母线长,即可计算圆锥的表面积.【题目详解】圆锥的高和底面半径之比,∴,又圆锥的体积,即,解得;∴,母线长为,则圆锥的表面积为.故选:D.【题目点拨】本题考查圆锥的体积和表面积公式,考查计算能力,属于基础题.4、A【解题分析】

线性规划问题,首先画出可行域,再令z=0,画出目标函数,上下平移得到z的最值。【题目详解】可行域如图所示,当目标函数平移到A点时z取最小值,故选A【题目点拨】线性规划中线性的目标函数问题,首先画出可行域,再令z=0,画出目标函数,上下平移得到z的最值。5、C【解题分析】

试题分析:圆柱截面可能是矩形;圆锥截面可能是三角形;圆台截面可能是梯形,该几何体显然是球,故选C.6、C【解题分析】试题分析:根据直线斜率的计算式有,解得.考点:直线斜率的计算式.7、B【解题分析】

由正弦定理可得3sinBsinA=4sin【题目详解】∵sinA4a∵sinA>0,∴tanB=4故选:B.【题目点拨】本题考查了正弦定理和同角三角函数的基本关系,属于基础题.8、C【解题分析】

,可得,则根据不等式的性质逐一分析选项,A:,,所以成立;B:,则,根据基本不等式以及等号成立的条件则可判断;C:且,根据可乘性可知结果;D:,根据乘方性可判断结果.【题目详解】A:由题意,不等式,可得,则,,所以成立,所以A是正确的;B:由,则,所以,因为,所以等号不成立,所以成立,所以B是正确的;C:由且,根据不等式的性质,可得,所以C不正确;D:由,可得,所以D是正确的,故选:C.【题目点拨】本题考查不等式的性质,不等式等号成立的条件,熟记不等式的性质是解题的关键,属于基础题.9、C【解题分析】试题分析:由正弦定理得,,由于,,,故答案为C.考点:正弦定理的应用.10、C【解题分析】

利用绝对值的几何意义求解,即表示数轴上与和-2的距离之和,其最小值为.【题目详解】∵,∴由解集为,得,解得.故选C.【题目点拨】本题考查绝对值不等式,考查绝对值的性质,解题时可按绝对值定义去绝对值符号后再求解,也可应用绝对值的几何意义求解.不等式解集为,可转化为的最小值不小于1,这是解题关键.二、填空题:本大题共6小题,每小题5分,共30分。11、②③⑤【解题分析】

将函数解析式改写成:,即可作出函数图象,根据图象即可判定.【题目详解】由题:,,所以函数为奇函数,,是该函数的周期,结合图象分析是其最小正周期,,作出函数图象:可得,该函数的最小正周期为,图像不关于对称;在区间上单调递减;图像不关于中心对称;故答案为:②③⑤【题目点拨】此题考查三角函数图象及其性质的辨析,涉及周期性,对称性和单调性,作为填空题,恰当地利用图象解决问题能够起到事半功倍的作用.12、【解题分析】

讨论斜率不存在和斜率存在两种情况,分别计算得到答案.【题目详解】抛物线的焦点F为,当斜率不存在时,易知,故;当斜率存在时,设,故,即,故,.综上所述:.故答案为:.【题目点拨】本题考查了抛物线中线段长度问题,意在考查学生的计算能力和转化能力.13、【解题分析】考点:此题主要考查三角函数的概念、化简、性质,考查运算能力.14、5【解题分析】

利用复数代数形式的乘法运算化简,然后代入复数模的公式,即可求得答案.【题目详解】由题意,复数,则复数的模为.故答案为5【题目点拨】本题主要考查了复数的乘法运算,以及复数模的计算,其中熟记复数的运算法则,和复数模的公式是解答的关键,着重考查了推理与运算能力,属于基础题.15、3【解题分析】

,故答案为3.16、80【解题分析】

由即可求出【题目详解】因为是等比数列,所以,所以即故答案为:80【题目点拨】本题考查的是等比数列的性质,较简单三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】

(1)在中,先得到再利用正弦定理得到.(2)在中,计算,由余弦定理得到,再用余弦定理得到.【题目详解】(1)在中,,则,又由正弦定理,得(2)在中,,则,又即是等腰三角形,得.由余弦定理,得所以.在中,由余弦定理,得所以.【题目点拨】本题考查了正弦定理和余弦定理,意在考查学生利用正余弦定理解决问题的能力.18、(1)证明见解析(2)【解题分析】

(1)利用当时,求证即可;(2)先结合(1)求得,再由,然后累加求和即可.【题目详解】解:(1)因为,①,②①-②得:,即,又,即,则,即数列是以6为首项,3为公比的等比数列;(2)由(1)得,则,即,则,即,故.【题目点拨】本题考查了利用定义法证明等比数列,重点考查了公式法求和及裂项求和法求和,属中档题.19、(1)见解析(2)0.7【解题分析】

(1)从代号为、、、、的5个人中任选2人,利用列举法能求出所有可能的结果.(2)、、三人为男性,、两人为女性,利用列举法求出选出的2人中不全为男性包含的基本事件有7种,由此能求出选出的2人中不全为男性的概率.【题目详解】(1)从代号为、、、、的5个人中任选2人.所有可能的结果有10种,分别为:,,,,,,,,,.(2)、、三人为男性,、两人为女性,选出的2人中不全为男性包含的基本事件有7种,分别为:,,,,,,.选出的2人中不全为男性的概率.【题目点拨】本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.20、(1)an=2n+1;bn=3n;(2)Sn=n•3n+1.【解题分析】

(1)利用基本元的思想,结合等差数列、等比数列的通项公式、等比中项的性质列方程,解方程求得的值,从而求得数列的通项公式.(2)利用错位相减求和法求得数列的前项和.【题目详解】(1)公差d不为零的等差数列{an}和公比为q的等比数列{bn},a1=b1=3,b2=a4,且a1,a4,a13成等比数列,可得3q=3+3d,a1a13=a42,即(3+3d)2=3(3+12d),解得d=2,q=3,可得an=3+2(n﹣1)=2n+1;bn=3n;(2)cn=an•bn=(2n+1)•3n,前n项和Sn=3•3+5•32+7•33+…+(2n+1)•3n,3Sn=3•32+5•33+7•34+…+(2n+1)•3n+1,两式相减可得﹣2Sn=9+2(32+33+…+3n)﹣(2n+1)•3n+1=9+2•(2n+1)•3n+1,化简可得Sn=n•3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论