版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河南省南阳市六校数学高一第二学期期末监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知等比数列的首项,公比,则()A. B. C. D.2.是空气质量的一个重要指标,我国标准采用世卫组织设定的最宽限值,即日均值在以下空气质量为一级,在之间空气质量为二级,在以上空气质量为超标.如图是某地11月1日到10日日均值(单位:)的统计数据,则下列叙述不正确的是()A.这天中有天空气质量为一级 B.这天中日均值最高的是11月5日C.从日到日,日均值逐渐降低 D.这天的日均值的中位数是3.已知正实数满足,则的最小值()A.2 B.3 C.4 D.4.若函数的图象可由函数的图象向右平移个单位长度变换得到,则的解析式是()A. B.C. D.5.下列三角方程的解集错误的是()A.方程的解集是B.方程的解集是C.方程的解集是D.方程(是锐角)的解集是6.执行如下的程序框图,则输出的是()A. B.C. D.7.的三内角所对的边分别为,若,则角的大小是()A. B. C. D.8.甲、乙、丙三人随机排成一排,乙站在中间的概率是()A. B. C. D.9.下列选项正确的是()A.若,则B.若,则C.若,则D.若,则10.函数的周期为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知在中,,则____________.12.四棱柱中,平面ABCD,平面ABCD是菱形,,,,E是BC的中点,则点C到平面的距离等于________.13.若直线与直线互相平行,那么a的值等于_____.14.已知,且是第一象限角,则的值为__________.15.设满足约束条件,则的最小值为__________.16.若,,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知是递增数列,其前项和为,,且,.(Ⅰ)求数列的通项;(Ⅱ)是否存在使得成立?若存在,写出一组符合条件的的值;若不存在,请说明理由;(Ⅲ)设,若对于任意的,不等式恒成立,求正整数的最大值.18.已知数列中,,.(1)证明数列为等比数列,并求的通项公式;(2)数列满足,数列的前项和为,求证.19.某种汽车的购车费用是10万元,每年使用的保险费、养路费、汽油费约为万元,年维修费用第一年是万元,第二年是万元,第三年是万元,…,以后逐年递增万元汽车的购车费用、每年使用的保险费、养路费、汽油费、维修费用的和平均摊到每一年的费用叫做年平均费用.设这种汽车使用年的维修费用的和为,年平均费用为.(1)求出函数,的解析式;(2)这种汽车使用多少年时,它的年平均费用最小?最小值是多少?20.已知的顶点,边上的中线所在直线方程为,的平分线所在直线方程为,求:(Ⅰ)顶点的坐标;(Ⅱ)直线的方程21.设函数,其中.(1)在实数集上用分段函数形式写出函数的解析式;(2)求函数的最小值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】
由等比数列的通项公式可得出.【题目详解】解:由已知得,故选:B.【题目点拨】本题考查等比数列的通项公式的应用,是基础题.2、D【解题分析】
由折线图逐一判断各选项即可.【题目详解】由图易知:第3,8,9,10天空气质量为一级,故A正确,11月5日日均值为82,显然最大,故B正确,从日到日,日均值分别为:82,73,58,34,30,逐渐降到,故C正确,中位数是,所以D不正确,故选D.【题目点拨】本题考查了频数折线图,考查读图,识图,用图的能力,考查中位数的概念,属于基础题.3、B【解题分析】
,当且仅当,即,时的最小值为3.故选B.点睛:本题主要考查基本不等式.在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.4、A【解题分析】
先化简函数,然后再根据图象平移得.【题目详解】由已知,∴.故选A.【题目点拨】本题考查两角和的正弦公式,考查三角函数的图象平移变换,属于基础题.5、B【解题分析】
根据余弦函数的性质可判断B是错误的.【题目详解】因为,故无解,故B错.对于A,的解集为,故A正确.对于C,的解集是,故C正确.对于D,,.因为为锐角,,所以或或,所以或或,故D正确.故选:B.【题目点拨】本题考查三角方程的解,注意对于三角方程,我们需掌握有解的条件和其通解公式,而给定范围上的解,需结合整体的范围来讨论,本题属于基础题.6、A【解题分析】
列出每一步算法循环,可得出输出结果的值.【题目详解】满足,执行第一次循环,,;成立,执行第二次循环,,;成立,执行第三次循环,,;成立,执行第四次循环,,;成立,执行第五次循环,,;成立,执行第六次循环,,;成立,执行第七次循环,,;成立,执行第八次循环,,;不成立,跳出循环体,输出的值为,故选:A.【题目点拨】本题考查算法与程序框图的计算,解题时要根据算法框图计算出算法的每一步,考查分析问题和计算能力,属于中等题.7、C【解题分析】
将进行整理,反凑余弦定理,即可得到角.【题目详解】因为即故可得又故.故选:C.【题目点拨】本题考查余弦定理的变形,属基础题.8、B【解题分析】
先求出甲、乙、丙三人随机排成一排的基本事件的个数,再求出乙站在中间的基本事件的个数,再求概率即可.【题目详解】解:三个人排成一排的所有情况有:甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙乙甲,丙甲乙共6种,乙在中间有2种,所以乙在中间的概率为,故选B.【题目点拨】本题考查了古典概型,属基础题.9、B【解题分析】
通过逐一判断ABCD选项,得到答案.【题目详解】对于A选项,若,代入,,故A错误;对于C选项,等价于,故C错误;对于D选项,若,则,故D错误,所以答案选B.【题目点拨】本题主要考查不等式的相关性质,难度不大.10、D【解题分析】
利用二倍角公式以及辅助角公式将函数化为,再利用三角函数的周期公式即可求解.【题目详解】,函数的最小正周期为.故选:D【题目点拨】本题考查了二倍角的余弦公式、辅助角公式以及三角函数的最小正周期的求法,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
根据可得,根据商数关系和平方关系可解得结果.【题目详解】因为,所以且,又,所以,所以,因为,所以.故答案为:.【题目点拨】本题考查了三角函数的符号法则,考查了同角公式中的商数关系和平方关系式,属于基础题.12、【解题分析】
利用等体法即可求解.【题目详解】如图,由ABCD是菱形,,,E是BC的中点,所以,又平面ABCD,所以平面ABCD,即,又,则平面,由平面,所以,所以,设点C到平面的距离为,由即,即,所以.故答案为:【题目点拨】本题考查了等体法求点到面的距离,同时考查了线面垂直的判定定理,属于基础题.13、;【解题分析】由题意得,验证满足条件,所以14、;【解题分析】
利用两角和的公式把题设展开后求得的值,进而利用的范围判断的范围,利用同角三角函数的基本关系求得的值,最后利用诱导公式和对原式进行化简,把的值和题设条件代入求解即可.【题目详解】,,即,,两边同时平方得到:,解得,是第一象限角,,得,,即为第一或第四象限,,.故答案为:.【题目点拨】本题考查了两角差的余弦公式、诱导公式以及同角三角函数的基本关系,需熟记三角函数中的公式,属于中档题.15、-1【解题分析】
由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.【题目详解】由x,y满足约束条件作出可行域如图,由图可知,目标函数的最优解为A,联立,解得A(﹣1,1).∴z=3x﹣2y的最小值为﹣3×1﹣2×1=﹣1.故答案为:﹣1.【题目点拨】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.16、【解题分析】
将等式和等式都平方,再将所得两个等式相加,并利用两角和的正弦公式可求出的值.【题目详解】若,,将上述两等式平方得,①,②,①+②可得,求得,故答案为.【题目点拨】本题考查利用两角和的正弦公式求值,解题的关键就是将等式进行平方,结合等式结构进行变形计算,考查运算求解能力,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)不存在(3)1【解题分析】
(Ⅰ),得,解得,或.由于,所以.因为,所以.故,整理,得,即.因为是递增数列,且,故,因此.则数列是以2为首项,为公差的等差数列.所以.………………5分(Ⅱ)满足条件的正整数不存在,证明如下:假设存在,使得,则.整理,得,①显然,左边为整数,所以①式不成立.故满足条件的正整数不存在.……1分(Ⅲ),不等式可转化为.设,则.所以,即当增大时,也增大.要使不等式对于任意的恒成立,只需即可.因为,所以.即.所以,正整数的最大值为1.………14分18、(1)证明见解析;;(2)【解题分析】
(1)先证明数列是以3为公比,以为首项的等比数列,从而,由此能求出的通项公式;(2)由(1)推导出,从而,利用错位相减法求和,利用放缩法证明.【题目详解】由,,得,,数列是以3为公比,以为首项的等比数列,从而,数列满足,,,,两式相减得:,,,【题目点拨】本题主要考查等比数列的定义、通项公式与求和公式,以及错位相减法的应用,是中档题.一般地,如果数列是等差数列,是等比数列,求数列的前项和时,可采用“错位相减法”求和,一般是和式两边同乘以等比数列的公比,然后作差求解,在写出“”与“”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“”的表达式.19、(1),;(2)时,年平均费用最小,最小值为3万元.【解题分析】试题分析:根据题意可知,汽车使用年的维修费用的和为,而第一年的维修费用是万元,以后逐年递增万元,每一年的维修费用形成以为首项,为公差的等差数列,根据等差数列的前项和即可求出的解析式;将购车费、每年使用的保险费、养路费、汽油费以及维修费用之和除以即可得到年平均费用,根据基本不等式即可求出平均费用的最小值.试题解析:(1)根据题意可知,汽车使用年的维修费用的和为,而第一年的维修费用是万元,以后逐年递增万元,每一年的维修费用形成以为首项,为公差的等差数列,根据等差数列的前项和公式可得:因为购车费、每年使用的保险费、养路费、汽油费以及维修费用之和为,所以年平均费用为;(2)因为所以当且仅当即时,年平均费用最小,最小值为3万元.考点:本题考查了等差数列的前项和公式以的掌握,以及基本不等式的应用,同时考查了学生解决实际应用题的能力.20、(Ⅰ)(Ⅱ)【解题分析】
(Ⅰ)设,可得中点坐标,代入直线可得;将点坐标代入直线得,可构造出方程组求得点坐标;(Ⅱ)设点关于的对称点为,根据点关于直线对称点的求解方法可求得,因为在直线上,根据两点坐标可求得直线方程.【题目详解】(Ⅰ)设,则中点坐标为:,即:又,解得:,(Ⅱ)设点关于的对称点为则,解得:边所在的直线方程为:,即:【题目点拨】本题考查直线方程、直线交点的求解;关键是能够熟练应用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年新款智能清洁机器人销售协议版B版
- 酿酒原料采购合同三篇
- 2024年度合作经营协议范本版B版
- 2024常年咨询财务顾问合同房地产
- 2024年新型材料研发与产业化合同
- 婚庆礼仪用车司机招聘合同
- 航空制造排水沟施工合同
- 企业借款合同范本指南
- 智能化景观照明施工合同
- 2024年住宅转让合同修订版3篇
- 小学语文教师基本功大赛试卷
- 全文解读2022年新制订《农村集体经济组织财务制度》PPT课件
- (精心整理)一般疑问句和特殊疑问句 讲解及练习
- 国家开放大学《土木工程力学(本)》形考作业1-5参考答案
- API-685-中文_
- 秘本六甲天书
- 彩灯变换控制器设计
- 高一物理必修一课程纲要Word版
- 土木工程力学(本)试题-2021秋本-土木工程本复习资料-国家开放大学2022年1月期末考试复习资料
- 3505_四自由度SCARA机器人结构设计
- 小学太阳系八大行星
评论
0/150
提交评论