版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届陕西省延安市实验中学大学区校际联盟高一数学第二学期期末考试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.一空间几何体的三视图如下图所示,则该几何体的体积为()A.1 B.3 C.6 D.22.下面结论中,正确结论的是()A.存在两个不等实数,使得等式成立B.(0<x<π)的最小值为4C.若是等比数列的前项的和,则成等比数列D.已知的三个内角所对的边分别为,若,则一定是锐角三角形3.已知,向量,则向量()A. B. C. D.4.已知函数,将的图象上的所有点的横坐标缩短到原来的,纵坐标保持不变;再把所得图象向上平移个单位长度,得到函数的图象,若,则的值可能为()A. B. C. D.5.若函数,则()A.9 B.1 C. D.06.矩形ABCD中,,,则实数()A.-16 B.-6 C.4 D.7.已知,则值为A. B. C. D.8.为了得到的图象,只需将的图象()A.向右平移 B.向左平移 C.向右平移 D.向左平移9.已知点A(﹣1,0),B(1,0),C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是()A.(0,1) B. C. D.10.已知数列,满足,若,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的部分图象如图所示,则函数的解析式为______.12.已知,且是第一象限角,则的值为__________.13.平面⊥平面,,,,直线,则直线与的位置关系是___.14.设直线与圆C:x2+y2-2ay-2=0相交于A,B两点,若,则圆C的面积为________15.方程的解集为____________.16.无限循环小数化成最简分数为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在平面直角坐标系xOy中,曲线与x轴交于不同的两点A,B,曲线Γ与y轴交于点C.(1)是否存在以AB为直径的圆过点C?若存在,求出该圆的方程;若不存在,请说明理由;(2)求证:过A,B,C三点的圆过定点,并求出该定点的坐标.18.如图,制图工程师要用两个同中心的边长均为4的正方形合成一个八角形图形,由对称性,图中8个三角形都是全等的三角形,设.(1)试用表示的面积;(2)求八角形所覆盖面积的最大值,并指出此时的大小.19.已知向量,其中,记函数,已知的最小正周期为.(1)求;(2)当时,试求函数的值域.20.设函数.(1)若不等式的解集,求的值;(2)若,①,求的最小值;②若在上恒成立,求实数的取值范围.21.已知等比数列的前n项和为,且,.(1)求数列的通项公式;(2)记,求的前n项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】
几何体是一个四棱锥,四棱锥的底面是一个直角梯形,直角梯形的上底是1,下底是2,垂直于底边的腰是2,一条侧棱与底面垂直,这条侧棱长是2.【题目详解】由三视图可知,几何体是一个四棱锥,四棱锥的底面是一个直角梯形,直角梯形的上底是1,下底是2,垂直于底边的腰是2,一条侧棱与底面垂直,这条侧棱长是2.四棱锥的体积是.故选D.【题目点拨】本题考查由三视图求几何体的体积,由三视图求几何体的体积,关键是由三视图还原几何体,同时还需掌握求体积的常用技巧如:割补法和等价转化法.2、A【解题分析】
对各个选项逐一判断,对于选项A,由,代入计算,即可判断是否正确;对于选项B,设,结合函数的单调性,即可判断是否正确;对于选项C,由公比为为偶数,即可判断是否正确;对于选项D,由余弦定理,即可判断是否正确.【题目详解】对于选项A,两个不等实数,使得等式成立,故A正确;对于选项B,若设设,可得在递减,即函数的最小值为,故B错误;对于选项C,是等比数列的前项的和,当公比,为偶数时,则,均为,不能够成等比数列,故C错误;对于选项D,中,若,可得,即为锐角,不能判断一定是锐角三角形,故D错误.故选:A.【题目点拨】本题考查两角和的正弦公式、基本不等式和等比数列的性质,以及余弦定理的应用,属于基础题.3、A【解题分析】
由向量减法法则计算.【题目详解】.故选A.【题目点拨】本题考查向量的减法法则,属于基础题.4、C【解题分析】
利用二倍角公式与辅助角公式将函数的解析式化简,然后利用图象变换规律得出函数的解析式为,可得函数的值域为,结合条件,可得出、均为函数的最大值,于是得出为函数最小正周期的整数倍,由此可得出正确选项.【题目详解】函数,将函数的图象上的所有点的横坐标缩短到原来的倍,得的图象;再把所得图象向上平移个单位,得函数的图象,易知函数的值域为.若,则且,均为函数的最大值,由,解得;其中、是三角函数最高点的横坐标,的值为函数的最小正周期的整数倍,且.故选C.【题目点拨】本题考查三角函数图象变换,同时也考查了正弦型函数与周期相关的问题,解题的关键在于确定、均为函数的最大值,考查分析问题和解决问题的能力,属于中等题.5、B【解题分析】
根据的解析式即可求出,进而求出的值.【题目详解】∵,∴,故,故选B.【题目点拨】本题主要考查分段函数的概念,以及已知函数求值的方法,属于基础题.6、B【解题分析】
根据题意即可得出,从而得出,进行数量积的坐标运算即可求出实数.【题目详解】据题意知,,,.故选:.【题目点拨】考查向量垂直的充要条件,以及向量数量积的坐标运算,属于容易题.7、B【解题分析】
利用三角函数的诱导公式,得到,即可求解.【题目详解】由题意,可得,故选B.【题目点拨】本题主要考查了三角函数的诱导公式的化简、求值,其中解答中熟练应用三角函数的诱导公式是解答的关键,着重考查了推理与运算能力,属于基础题.8、B【解题分析】
先利用诱导公式将函数化成正弦函数的形式,再根据平移变换,即可得答案.【题目详解】∵,∵,∴只需将的图象向左平移可得.故选:B.【题目点拨】本题考查诱导公式、三角函数的平移变换,考查逻辑推理能力和运算求解能力,求解时注意平移是针对自变量而言的.9、B【解题分析】
先求得直线y=ax+b(a>0)与x轴的交点为M(,0),由0可得点M在射线OA上.求出直线和BC的交点N的坐标,①若点M和点A重合,求得b;②若点M在点O和点A之间,求得b;③若点M在点A的左侧,求得b>1.再把以上得到的三个b的范围取并集,可得结果.【题目详解】由题意可得,三角形ABC的面积为1,由于直线y=ax+b(a>0)与x轴的交点为M(,0),由直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,可得b>0,故0,故点M在射线OA上.设直线y=ax+b和BC的交点为N,则由可得点N的坐标为(,).①若点M和点A重合,如图:则点N为线段BC的中点,故N(,),把A、N两点的坐标代入直线y=ax+b,求得a=b.②若点M在点O和点A之间,如图:此时b,点N在点B和点C之间,由题意可得三角形NMB的面积等于,即,即,可得a0,求得b,故有b.③若点M在点A的左侧,则b,由点M的横坐标1,求得b>a.设直线y=ax+b和AC的交点为P,则由求得点P的坐标为(,),此时,由题意可得,三角形CPN的面积等于,即•(1﹣b)•|xN﹣xP|,即(1﹣b)•||,化简可得2(1﹣b)2=|a2﹣1|.由于此时b>a>0,0<a<1,∴2(1﹣b)2=|a2﹣1|=1﹣a2.两边开方可得(1﹣b)1,∴1﹣b,化简可得b>1,故有1b.综上可得b的取值范围应是,故选B.【题目点拨】本题主要考查确定直线的要素,点到直线的距离公式以及三角形的面积公式的应用,还考查了运算能力以及综合分析能力,分类讨论思想,属于难题.10、C【解题分析】
利用递推公式计算出数列的前几项,找出数列的周期,然后利用周期性求出的值.【题目详解】,且,,,,所以,,则数列是以为周期的周期数列,.故选:C.【题目点拨】本题考查利用数列递推公式求数列中的项,推导出数列的周期是解本题的关键,考查分析问题和解决问题的能力,属于中等题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
根据三角函数图象依次求得的值.【题目详解】由图象可知,,所以,故,将点代入上式得,因为,所以.故.故答案为:【题目点拨】本小题主要考查根据三角函数的图象求三角函数的解析式,属于基础题.12、;【解题分析】
利用两角和的公式把题设展开后求得的值,进而利用的范围判断的范围,利用同角三角函数的基本关系求得的值,最后利用诱导公式和对原式进行化简,把的值和题设条件代入求解即可.【题目详解】,,即,,两边同时平方得到:,解得,是第一象限角,,得,,即为第一或第四象限,,.故答案为:.【题目点拨】本题考查了两角差的余弦公式、诱导公式以及同角三角函数的基本关系,需熟记三角函数中的公式,属于中档题.13、【解题分析】
利用面面垂直的性质定理得到平面,又直线,利用线面垂直性质定理得.【题目详解】在长方体中,设平面为平面,平面为平面,直线为直线,由于,,由面面垂直的性质定理可得:平面,因为,由线面垂直的性质定理,可得.【题目点拨】空间中点、线、面的位置关系问题,一般是利用线面平行或垂直的判定定理或性质定理进行求解.14、【解题分析】因为圆心坐标与半径分别为,所以圆心到直线的距离,则,解之得,所以圆的面积,应填答案.15、或【解题分析】
首先将原方程利用辅助角公式化简为,再求出的值即可.【题目详解】由题知:,,.所以或,.解得:或.所以解集为:或.故答案为:或【题目点拨】本题主要考查正弦函数的图像及特殊角的三角函数值,同时考查了辅助角公式,属于中档题.16、【解题分析】
利用无穷等比数列求和的方法即可.【题目详解】.故答案为:【题目点拨】本题主要考查了无穷等比数列的求和问题,属于基础题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)存在,(2)证明见解析,圆方程恒过定点或【解题分析】
(1)将曲线Γ方程中的y=1,得x2﹣mx+2m=1.利用韦达定理求出C,通过坐标化,求出m得到所求圆的方程.(2)设过A,B,C的圆P的方程为(x﹣a)2+(y﹣b)2=r2列出方程组利用圆系方程,推出圆P方程恒过定点即可.【题目详解】由曲线Γ:y=x2﹣mx+2m(m∈R),令y=1,得x2﹣mx+2m=1.设A(x1,1),B(x2,1),则可得△=m2﹣8m>1,x1+x2=m,x1x2=2m.令x=1,得y=2m,即C(1,2m).(1)若存在以AB为直径的圆过点C,则,得,即2m+4m2=1,所以m=1或.由△>1,得m<1或m>8,所以,此时C(1,﹣1),AB的中点M(,1)即圆心,半径r=|CM|故所求圆的方程为.(2)设过A,B,C的圆P的方程为(x﹣a)2+(y﹣b)2=r2满足代入P得展开得(﹣x﹣2y+2)m+x2+y2﹣y=1当,即时方程恒成立,∴圆P方程恒过定点(1,1)或.【题目点拨】本题考查圆的方程的应用,圆系方程恒过定点的求法,考查转化思想以及计算能力.18、(1),.(2)时,达到最大此时八角形所覆盖面积前最大值为.【解题分析】
(1)注意到,从而的周长为,故,所以,注意.(2)令,则,根据可求最大值.【题目详解】(1)设为,,,,,(2)令,只需考虑取到最大值的情况,即为,当,即时,达到最大,此时八角形所覆盖面积为16+4最大值为.【题目点拨】如果三角函数式中仅含有和,则可令后利用把三角函数式变成关于的函数,注意换元后的范围.19、(1)1(2)【解题分析】
(1)先根据向量数列积得关系式,再根据二倍角公式以及配角公式化为基本三角函数形式,最后根据正弦函数周期性得;(2)先根据x取值范围得范围,再根据正弦函数性质确定值域.【题目详解】(1)(2)由(1)知,,,所以函数的值域.【题目点拨】本题考查二倍角公式、配角公式以及正弦函数性质,考查基本分析求解能力.20、(1)(2)①9,②【解题分析】
(1)根据不等式的端点值是对应方程的实数根,利用根与系数的关系,得到的值;(2)①根据求的最值,可利用求最值;②利用二次函数恒成立问题求解.【题目详解】由已知可知,的两根
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年特许权使用合同:矿山设备租赁与技术支持2篇
- 青春广播稿15篇
- 折线统计图教学设计
- 浙江省台州市2023-2024学年四年级上学期语文期末试卷(含答案)
- 设计成果迭代合同
- 诚信售后服务保证书范文
- 语文大专考试指导卷
- 语文课堂教学方法探讨
- 货物订购协议实例
- 质量保障书模板
- 2024版离婚起诉书范本
- 高中英语英汉互译集中训练题350题(含答案)
- 云计算白皮书(2024年)
- 创新创业创造:职场竞争力密钥智慧树知到期末考试答案章节答案2024年上海对外经贸大学
- 人教版部编道德与法治一年级上册《全册完整》课件
- AQ 1119-2023 煤矿井下人员定位系统技术条件
- 地买卖合同5篇
- 2023-2024学年七年级上册语文期末考试名校真题检测卷(解析版)
- 兼职转全职离职合同样本
- 汉字与对外汉语教学智慧树知到期末考试答案章节答案2024年西北师范大学
- 精液基础检验 要求和实验方法
评论
0/150
提交评论