上海市华师大二附中2024届数学高一下期末复习检测模拟试题含解析_第1页
上海市华师大二附中2024届数学高一下期末复习检测模拟试题含解析_第2页
上海市华师大二附中2024届数学高一下期末复习检测模拟试题含解析_第3页
上海市华师大二附中2024届数学高一下期末复习检测模拟试题含解析_第4页
上海市华师大二附中2024届数学高一下期末复习检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市华师大二附中2024届数学高一下期末复习检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知两点,,若直线与线段相交,则实数的取值范围是()A. B.C. D.2.如果角的终边经过点,那么的值是()A. B. C. D.3.在中,内角所对的边分别为,且,则()A. B. C. D.4.在数列中,已知,,则一定()A.是等差数列 B.是等比数列 C.不是等差数列 D.不是等比数列5.直线2x+y+4=0与圆x+22+y+32=5A.255 B.4556.函数图象的一个对称中心和一条对称轴可以是()A., B.,C., D.,7.已知,则向量在方向上的投影为()A. B. C. D.8.德国数学家科拉茨1937年提出了一个著名的猜想:任给一个正整数,如果是偶数,就将它减半(即);如果是奇数,则将它乘3加1(即),不断重复这样的运算,经过有限步后,一定可以得到1.对于科拉茨猜想,目前谁也不能证明,也不能否定,现在请你研究:如果对正整数(首项)按照上述规则施行变换后的第6项为1(注:1可以多次出现),则的所有不同值的个数为()A.3 B.4 C.5 D.329.设非零向量,满足,则()A. B. C.// D.10.在中,是边上一点,,且,则的值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.己知是等差数列,是其前项和,,则______.12.某校高一、高二、高三分别有学生1600名、1200名、800名,为了解该校高中学生的牙齿健康状况,按各年级的学生数进行分层抽样,若高三抽取20名学生,则高一、高二共抽取的学生数为.13.方程在区间的解为_______.14.已知常数θ∈(0,π2),若函数f(x)在Rf(x)=2sinπx-1≤x≤1log是________.15.若,则函数的值域为________.16.直线的倾斜角的大小是_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知为等差数列,前项和为,是首项为的等比数列,且公比大于,,,.(1)求和的通项公式;(2)求数列的前项和.18.在平面直角坐标系xOy中,已知圆,三个点,B、C均在圆上,(1)求该圆的圆心的坐标;(2)若,求直线BC的方程;(3)设点满足四边形TABC是平行四边形,求实数t的取值范围.19.己知函数.(1)若,,求;(2)当为何值时,取得最大值,并求出最大值.20.已知的顶点,边上的中线所在直线方程为,的平分线所在直线方程为,求:(Ⅰ)顶点的坐标;(Ⅱ)直线的方程21.若是公差不为0的等差数列的前n项和,且成等比数列.(1)求数列的公比.(2)若,求的通项公式.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】

找出直线与PQ相交的两种临界情况,求斜率即可.【题目详解】因为直线恒过定点,根据题意,作图如下:直线与线段PQ相交的临界情况分别为直线MP和直线MQ,已知,,由图可知:当直线绕着点M向轴旋转时,其斜率范围为:;当直线与轴重合时,没有斜率;当直线绕着点M从轴至MP旋转时,其斜率范围为:综上所述:,故选:D.【题目点拨】本题考查直线斜率的计算,直线斜率与倾斜角的关系,属基础题.2、D【解题分析】

根据任意角的三角函数定义直接求解.【题目详解】因为角的终边经过点,所以,故选:D.【题目点拨】本题考查任意角的三角函数求值,属于基础题.3、C【解题分析】

根据题目条件结合三角形的正弦定理以及三角形内角和定理可得sinA,进而利用二倍角余弦公式得到结果.【题目详解】∵.∴sinAcosB=4sinCcosA﹣sinBcosA即sinAcosB+sinBcosA=4cosAsinC∴sinC=4cosAsinC∵1<C<π,sinC≠1.∴1=4cosA,即cosA,那么.故选C【题目点拨】本题考查了正弦定理及二倍角余弦公式的灵活运用,考查计算能力,属于基础题.4、C【解题分析】

依据等差、等比数列的定义或性质进行判断。【题目详解】因为,,,所以一定不是等差数列,故选C。【题目点拨】本题主要考查等差、等比数列定义以及性质的应用。5、C【解题分析】

先求出圆心到直线的距离d,然后根据圆的弦长公式l=2r【题目详解】由题意得,圆x+22+y+32=5圆心-2,-3到直线2x+y+4=0的距离为d=|2×(-2)-3+4|∴MN=2故选C.【题目点拨】求圆的弦长有两种方法:一是求出直线和圆的交点坐标,然后利用两点间的距离公式求解;二是利用几何法求解,即求出圆心到直线的距离,在由半径、弦心距和半弦长构成的直角三角形中运用勾股定理求解,此时不要忘了求出的是半弦长.在具体的求解中一般利用几何法,以减少运算、增强解题的直观性.6、B【解题分析】

直接利用余弦型函数的性质求出函数的对称轴和对称中心,即可得到答案.【题目详解】由题意,函数的性质,令,解得,当时,,即函数的一条对称轴的方程为,令,解得,当时,,即函数的一个对称中心为,故选B.【题目点拨】本题主要考查了余弦型函数的性质对称轴和对称中心的应用,着重考查学生的运算能力和转换能力,属于基础题型.7、B【解题分析】

根据向量夹角公式求得夹角的余弦值;根据所求投影为求得结果.【题目详解】由题意得:向量在方向上的投影为:本题正确选项:【题目点拨】本题考查向量在方向上的投影的求解问题,关键是能够利用向量数量积求得向量夹角的余弦值.8、A【解题分析】

由题意:任给一个正整数,如果是偶数,就将它减半(即);如果是奇数,则将它乘3加1(即),我们可以从第六项为1出发,逐项求出各项的取值,可得的所有不同值的个数.【题目详解】解:由题意:如果对正整数(首项)按照上述规则施行变换后的第6项为1,则变换中的第5项一定是2,变换中的第4项一定是4,变换中的第3项可能是1,也可能是8,变换中的第2项可能是2,也可能是16,则的可能是4,也可能是5,也可能是32,故的所有可能的取值为,故选:A.【题目点拨】本题主要考查数列的应用及简单的逻辑推理,属于中档题.9、A【解题分析】

根据与的几何意义可以判断.【题目详解】由的几何意义知,以向量,为邻边的平行四边形为矩形,所以.故选:A.【题目点拨】本题考查向量的加减法的几何意义,同时,本题也可以两边平方,根据数量积的运算推出结论.10、D【解题分析】

根据,用基向量表示,然后与题目条件对照,即可求出.【题目详解】由在中,是边上一点,,则,即,故选.【题目点拨】本题主要考查了平面向量基本定理的应用及向量的线性运算.二、填空题:本大题共6小题,每小题5分,共30分。11、-1【解题分析】

由等差数列的结合,代入计算即可.【题目详解】己知是等差数列,是其前项和,所以,得,由等差中项得,所以.故答案为-1【题目点拨】本题考查了等差数列前项和公式和等差中项的应用,属于基础题.12、70【解题分析】设高一、高二抽取的人数分别为,则,解得.【考点】分层抽样.13、或【解题分析】

由题意求得,利用反三角函数求出方程在区间的解.【题目详解】解:,得,,或,;方程在区间的解为:或.故答案为:或.【题目点拨】本题考查了三角函数方程的解法与应用问题,是基础题.14、15【解题分析】

根据f(-1【题目详解】∵函数f(x)在R上恒有f(-1∴f-∴函数周期为4.∵常数θ∈(0,π∴cos∴函数y=f(x)-cosθ-1在区间[-5,14]上零点,即函数y=f(x) (x∈[-5,14])与直线由f(x)=2sinπx由图可知,在一个周期内,函数y=f(x)-cos故函数y=f(x)-cosθ-1在区间故填15.【题目点拨】本题主要考查了函数零点的个数判断,涉及数形结合思想在解题中的运用,属于难题.15、【解题分析】

令,结合可得,本题转化为求二次函数在的值域,求解即可.【题目详解】,.令,,则,由二次函数的性质可知,当时,;当时,.故所求值域为.【题目点拨】本题考查了函数的值域,利用换元法是解决本题的一个方法.16、【解题分析】试题分析:由题意,即,∴.考点:直线的倾斜角.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),,;(2),.【解题分析】

(1)由等差数列和等比数列的基本量法求数列的通项公式;(2)用错位相减法求和.【题目详解】(1)数列公比为,则,∵,∴,∴,的公差为,首项是,则,,∴,解得.∴.(2),数列的前项和记为,,①,②①-②得:,∴.【题目点拨】本题考查等差数列和等比数列的通项公式,考查等差数列的前n项和及错位相减法求和.在求等差数列和等比数列的通项公式及前n项和公式时,基本量法是最基本也是最重要的方法,务必掌握,数列求和时除公式法外,有些特殊方法也需掌握:错位相减法,裂项相消法,分组(并项)求和法等等.18、(1)(2)或(3),【解题分析】

(1)将点代入圆的方程可得的值,继而求出半径和圆心(2)可设直线方程为:,可得圆心到直线的距离,结合弦心距定理可得的值,求出直线方程(3)设,,,,因为平行四边形的对角线互相平分,得,,于是点既在圆上,又在圆上,从而圆与圆上有公共点,即可求解.【题目详解】(1)将代入圆得,解得,.半径.(2),,且,设直线,即,圆心到直线的距离,由勾股定理得,,,,或,所以直线的方程为或.(3)设,,,,因为平行四边形的对角线互相平分,所以①,因为点在圆上,所以②将①代入②,得,于是点既在圆上,又在圆上,从而圆与圆有公共点,所以,解得.因此,实数的取值范围是,.【题目点拨】本题考查了直线与圆的关系,涉及了向量知识,弦心距公式,点到直线的距离公式等内容,综合性较强,难度较大.19、(1);(1),1.【解题分析】

(1)由题得,再求出x的值;(1)先化简得到,再利用三角函数的性质求函数的最大值及此时x的值.【题目详解】(1)令,则,因为,所以.(1),当,即时,的最大值为1.【题目点拨】本题主要考查解简单的三角方程,考查三角函数的最值,意在考查学生对这些知识的理解掌握水平,属于基础题.20、(Ⅰ)(Ⅱ)【解题分析】

(Ⅰ)设,可得中点坐标,代入直线可得;将点坐标代入直线得,可构造出方程组求得点坐标;(Ⅱ)设点关于的对称点为,根据点关于直线对称点的求解方法可求得,因为在直线上,根据两点坐标可求得直线方程.【题目详解】(Ⅰ)设,则中点坐标为:,即:又,解得:,(Ⅱ)设点关于的对称点为则,解得:边所在的直线方程为:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论