![广东省佛山市佛山一中2024届数学高一第二学期期末复习检测试题含解析_第1页](http://file4.renrendoc.com/view10/M02/2A/1F/wKhkGWWeyHiABo7uAAGgraKsA5E206.jpg)
![广东省佛山市佛山一中2024届数学高一第二学期期末复习检测试题含解析_第2页](http://file4.renrendoc.com/view10/M02/2A/1F/wKhkGWWeyHiABo7uAAGgraKsA5E2062.jpg)
![广东省佛山市佛山一中2024届数学高一第二学期期末复习检测试题含解析_第3页](http://file4.renrendoc.com/view10/M02/2A/1F/wKhkGWWeyHiABo7uAAGgraKsA5E2063.jpg)
![广东省佛山市佛山一中2024届数学高一第二学期期末复习检测试题含解析_第4页](http://file4.renrendoc.com/view10/M02/2A/1F/wKhkGWWeyHiABo7uAAGgraKsA5E2064.jpg)
![广东省佛山市佛山一中2024届数学高一第二学期期末复习检测试题含解析_第5页](http://file4.renrendoc.com/view10/M02/2A/1F/wKhkGWWeyHiABo7uAAGgraKsA5E2065.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省佛山市佛山一中2024届数学高一第二学期期末复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与原正方体体积的比值为()A. B. C. D.2.一支田径队有男运动员560人,女运动员420人,为了解运动员的健康情况,从男运动员中任意抽取16人,从女生中任意抽取12人进行调查.这种抽样方法是()A.简单随机抽样法 B.抽签法C.随机数表法 D.分层抽样法3.如图,为正方体,下面结论错误的是()A.异面直线与所成的角为45° B.平面C.平面平面 D.异面直线与所成的角为45°4.圆与直线的位置关系为()A.相离 B.相切C.相交 D.以上都有可能5.若a<b<0,则下列不等式关系中,不能成立的是()A. B. C. D.6.已知是的边上的中点,若向量,,则向量等于()A. B. C. D.7.已知向量,,则向量在向量方向上的投影为()A. B. C.-1 D.18.已知数列满足,则()A. B. C. D.9.已知基本单位向量,,则的值为()A.1 B.5 C.7 D.2510.设偶函数定义在上,其导数为,当时,,则不等式的解集为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,则函数的最小值是___.12.在中,角的对边分别为,若,则角________.13.若集合,,则集合________.14.向量在边长为1的正方形网格中的位置如图所示,则以向量为邻边的平行四边形的面积是_________.15.在中,角、、所对应边分别为、、,,的平分线交于点,且,则的最小值为______16.设,,,则,,从小到大排列为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知的三个顶点为.(1)求过点且平行于的直线方程;(2)求过点且与、距离相等的直线方程.18.已知函数满足且.(1)当时,求的表达式;(2)设,求证:;19.已知是复数,与均为实数,且复数在复平面上对应的点在第一象限,求实数的取值范围.20.设{an}是等差数列,a1=–10,且a2+10,a3+8,a4+6成等比数列.(Ⅰ)求{an}的通项公式;(Ⅱ)记{an}的前n项和为Sn,求Sn的最小值.21.如图,在中,,,,.(Ⅰ)求AB;(Ⅱ)求AD.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】
根据三视图还原出几何体,得到是在正方体中,截去四面体,利用体积公式,求出其体积,然后得到答案.【题目详解】根据三视图还原出几何体,如图所述,得到是在正方体中,截去四面体设正方体的棱长为,则,故剩余几何体的体积为,所以截去部分的体积与剩余部分的体积的比值为.故选:C.【题目点拨】本题考查了几何体的三视图求几何体的体积;关键是正确还有几何体,利用体积公式解答,属于简单题.2、D【解题分析】
若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样【题目详解】总体由男生和女生组成,比例为560:420=4:1,所抽取的比例也是16:12=4:1.故选D.【题目点拨】本小题主要考查抽样方法,当总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样,属基本题.3、A【解题分析】
根据正方体性质,依次证明线面平行和面面平行,根据直线的平行关系求异面直线的夹角.【题目详解】根据正方体性质,,所以异面直线与所成的角等于,,,所以不等于45°,所以A选项说法不正确;,四边形为平行四边形,,平面,平面,所以平面,所以B选项说法正确;同理可证:平面,是平面内两条相交直线,所以平面平面,所以C选项说法正确;,异面直线与所成的角等于,所以D选项说法正确.故选:A【题目点拨】此题考查线面平行和面面平行的判定,根据平行关系求异面直线的夹角,考查空间线线平行和线面平行关系的掌握4、C【解题分析】
由直线方程可确定其恒过的定点,由点与圆的位置关系的判定方法知该定点在圆内,则可知直线与圆相交.【题目详解】由得:直线恒过点在圆内部直线与圆相交故选:【题目点拨】本题考查直线与圆位置关系的判定,涉及到直线恒过定点的求解、点与圆的位置关系的判定,属于常考题型.5、B【解题分析】
根据的单调性,可知成立,不成立;根据和的单调性,可知成立.【题目详解】在上单调递减,成立又,不成立在上单调递增,成立在上单调递减,成立故选:【题目点拨】本题考查利用函数单调性比较大小的问题,关键是能够建立起合适的函数模型,根据自变量的大小关系,结合单调性得到结果.6、C【解题分析】
根据向量加法的平行四边形法则,以及平行四边形的性质可得,,解出向量.【题目详解】根据平行四边形法则以及平行四边形的性质,有.故选.【题目点拨】本题考查向量加法的平行四边形法则以及平行四边形的性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.7、A【解题分析】
根据投影的定义和向量的数量积求解即可.【题目详解】解:∵,,∴向量在向量方向上的投影,故选:A.【题目点拨】本题主要考查向量的数量积的定义及其坐标运算,属于基础题.8、B【解题分析】
分别令,求得不等式,由此证得成立.【题目详解】当时,,当时,,当时,,所以,所以,故选B.【题目点拨】本小题主要考查根据数列递推关系判断项的大小关系,属于基础题.9、B【解题分析】
计算出向量的坐标,再利用向量的求模公式计算出的值.【题目详解】由题意可得,因此,,故选B.【题目点拨】本题考查向量模的计算,解题的关键就是求出向量的坐标,并利用坐标求出向量的模,考查运算求解能力,属于基础题.10、C【解题分析】构造函数,则,所以当时,,单调递减,又在定义域内为偶函数,所以在区间单调递增,单调递减,又等价于,所以解集为.故选C.点睛:本题考查导数的构造法应用.本题中,由条件构造函数,结合函数性质,可得抽象函数在区间单调递增,单调递减,结合函数草图,即可解得不等式解集.二、填空题:本大题共6小题,每小题5分,共30分。11、5【解题分析】因为,所以,函数,当且仅当,即时等号成立.点睛:本题考查了基本不等式的应用,属于基础题.在用基本不等式时,注意"一正二定三相等"这三个条件,关键是找定值,在本题中,将拆成,凑成定值,再用基本不等式求出最小值.12、【解题分析】
根据得,利用余弦定理即可得解.【题目详解】由题:,,,由余弦定理可得:,.故答案为:【题目点拨】此题考查根据余弦定理求解三角形的内角,关键在于熟练掌握余弦定理公式,准确计算求解.13、【解题分析】由题意,得,,则.14、3【解题分析】
将向量平移至相同的起点,写出向量对应的坐标,计算向量的夹角,从而求得面积.【题目详解】根据题意,将两个向量平移至相同的起点,以起点为原点建立坐标系如下所示:则,故.又两向量的夹角为锐角,故,则该平行四边形的面积为.故答案为:3.【题目点拨】本题考查用向量解决几何问题的能力,涉及向量坐标的求解,夹角的求解,属基础题.15、18【解题分析】
根据三角形面积公式找到的关系,结合基本不等式即可求得最小值.【题目详解】根据题意,,因为的平分线交于点,且,所以而所以,化简得则当且仅当,即,时取等号,即最小值为.故答案为:【题目点拨】本题考查三角形面积公式和基本不等式,考查计算能力,属于中等题型16、【解题分析】
首先利用辅助角公式,半角公式,诱导公式分别求出,,的值,然后结合正弦函数的单调性对,,排序即可.【题目详解】由题知,,,因为正弦函数在上单调递增,所以.故答案为:.【题目点拨】本题考查了辅助角公式,半角公式,诱导公式,正弦函数的单调区间,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】
(1)先由两点写出直线BC的方程,再根据点斜式写出目标直线的方程;(2)过点B且与直线AC平行的直线即为所求,注意垂直平分线不过点B,故舍去.【题目详解】(1)由、两点的坐标可得,因为待求直线与直线BC平行,故其斜率为由点斜式方程可得目标直线方程为整理得.(2)由、点的坐标可知,其中点坐标为又直线AC没有斜率,故其垂直平分线为,此直线不经过点B,故垂直平分线舍去;则满足题意的直线为与直线AC平行的直线,即.综上所述,满足题意的直线方程为.【题目点拨】本题考查直线方程的求解,属基础题.18、(1);(2)详见解析.【解题分析】
(1)令,将函数表示为等比数列,根据等比数列公式得到答案.(2)将表示出来,利用错位相减法得到前N项和,最后证明不等式.【题目详解】(1)令,得,∴,即(2),设,则,①,②来①-②得,【题目点拨】本题考查了函数与数列的关系,错位相减法,综合性强,意在考查学生的计算能力和综合应用能力.19、【解题分析】试题分析:解:设,为实数,.为实数,,则.在第一象限,解得.考点:本题主要考查复数相等的充要条件,复数的代数表示法及其几何意义;复数代数形式的运算,不等式组解法.点评:主要运用复数的基础知识,具有一定综合性,中档题.20、(Ⅰ);(Ⅱ).【解题分析】
(Ⅰ)由题意首先求得数列的公差,然后利用等差数列通项公式可得的通项公式;(Ⅱ)首先求得的表达式,然后结合二次函数的性质可得其最小值.【题目详解】(Ⅰ)设等差数列的公差为,因为成等比数列,所以,即,解得,所以.(Ⅱ)由(Ⅰ)知,所以;当或者时,取到最小值.【题目点拨】等差
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025网络摄像机技术规范
- 第3节 声的利用(备课讲义)-2021-2022学年八年级物理上册同步备课讲义和课后训练(人教版)
- 《酶与催化反应》课件
- 《HPLC仪的保养》课件
- 《强制措施》课件
- 2025至2031年中国套管式超高温灭菌机行业投资前景及策略咨询研究报告
- 2025至2031年中国二十四门储物柜行业投资前景及策略咨询研究报告
- 2025至2030年中国首乌洗发水香精数据监测研究报告
- 信息系统开发的项目管理课件
- 插图动画素材课件
- 高教版2023年中职教科书《语文》(基础模块)上册教案全册
- 光伏项目施工总进度计划表(含三级)
- 医保基金监管培训课件
- 部编版小学语文四年级下册教师教学用书(教学参考)完整版
- 基层法律服务所设立登记表
- 第四代建筑悬挑阳台脚手架施工
- 三相四线及三相三线错误接线向量图研究分析及更正
- 线务员之歌(电信线务员朗诵词)
- (完整版)fluent炉膛仿真教程文档
- 生活饮用水水质常规指标及限值表
- 浅谈六解放思想指导下的以水墨为主的幼儿园美育实践活动
评论
0/150
提交评论