2024届海北市重点中学数学高一下期末复习检测试题含解析_第1页
2024届海北市重点中学数学高一下期末复习检测试题含解析_第2页
2024届海北市重点中学数学高一下期末复习检测试题含解析_第3页
2024届海北市重点中学数学高一下期末复习检测试题含解析_第4页
2024届海北市重点中学数学高一下期末复习检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届海北市重点中学数学高一下期末复习检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,则的最小值为A.3 B.4 C.5 D.62.公差不为零的等差数列{an}的前n项和为Sn,若a3是a2与a6的等比中项,S3=3,则S8=()A.36 B.42 C.48 D.603.在空间直角坐标系中,点关于平面对称的点的坐标为()A. B. C. D.4.已知,取值如下表:014561.3m3m5.67.4画散点图分析可知:与线性相关,且求得回归方程为,则m的值(精确到0.1)为()A.1.5 B.1.6 C.1.7 D.1.85.已知函数f(x)=2x+log2x,且实数a>b>c>0,满足A.x0<a B.x0>a6.曲线与曲线的()A.长轴长相等 B.短轴长相等C.焦距相等 D.离心率相等7.记复数的虚部为,已知满足,则为()A. B. C.2 D.8.已知,都是实数,那么“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.函数的图象向右平移个单位后,得到函数的图象,若为偶函数,则的值为()A. B. C. D.10..在各项均为正数的等比数列中,若,则…等于()A.5 B.6 C.7 D.8二、填空题:本大题共6小题,每小题5分,共30分。11.函数的最小值为____________.12.等差数列中,,则其前12项之和的值为______13.在平面直角坐标系中,点,,若直线上存在点使得,则实数的取值范围是_____.14.若圆:与圆:相交于,两点,且两圆在点处的切线互相垂直,则公共弦的长度是______.15.函数的反函数是______.16.若,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的最小正周期为,(1)求函数的单调递减区间;(2)若函数在区间上有两个零点,求实数的取值范围.18.已知⊙C经过点、两点,且圆心C在直线上.(1)求⊙C的方程;(2)若直线与⊙C总有公共点,求实数的取值范围.19.锐角三角形的内角A,B,C的对边分别为a,b,c,且.(1)求A;(2)若,,求面积.20.设平面三点、、.(1)试求向量的模;(2)若向量与的夹角为,求;(3)求向量在上的投影.21.已知函数(I)求的值(II)求的最小正周期及单调递增区间.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】

由,得,则,利用基本不等式,即可求解.【题目详解】由题意,因为,则,所以,当且仅当时,即时取等号,所以的最小值为5,故选C.【题目点拨】本题主要考查了基本不等式的应用,其中解答中熟记基本不等式的使用条件,合理构造是解答的关键,着重考查了推理与运算能力,属于基础题.2、C【解题分析】

设出等差数列的公差d,根据a3是a2与a6的等比中项,S3=3,利用等比数列的性质和等差数列的前n项和的公式化简得到关于等差数列首项和公差方程组,求出方程组的解集即可得到首项和公差,然后再利用等差数列的前n项和的公式求出S8即可【题目详解】设公差为d(d≠0),则有,化简得:,因为d≠0,解得a1=-1,d=2,则S8=-82=1.故选:C.【点评】此题考查运用等差数列的前n项和的公式及等比数列的通项公式化简求值,意在考查公式运用,是基础题.3、C【解题分析】

纵竖坐标不变,横坐标变为相反数.【题目详解】点关于平面对称的点的坐标为.故选C.【题目点拨】本题考查空间直角坐标系,属于基础题.4、C【解题分析】

根据表格中的数据,求得样本中心为,代入回归直线方程,即可求解.【题目详解】由题意,根据表格中的数据,可得,,即样本中心为,代入回归直线方程,即,解得,故选C.【题目点拨】本题主要考查了回归直线方程的应用,其中解答中熟记回归直线方程的基本特征是解答的关键,着重考查了推理与运算能力,属于基础题.5、D【解题分析】

由函数的单调性可得:当x0<c时,函数的单调性可得:f(a)>0,f(b)>0,f(c)>0,即不满足f(a)f(b)f(c)【题目详解】因为函数f(x)=2则函数y=f(x)在(0,+∞)为增函数,又实数a>b>c>0,满足f(a)f(b)f(c)<0,则f(a),f(b),f(c)为负数的个数为奇数,对于选项A,B,C选项可能成立,对于选项D,当x0函数的单调性可得:f(a)>0,f(b)>0,f(c)>0,即不满足f(a)f(b)f(c)<0,故选项D不可能成立,故选:D.【题目点拨】本题考查了函数的单调性,属于中档题.6、D【解题分析】

首先将后面的曲线化简为标准形式,分别求两个曲线的几何性质,比较后得出选项.【题目详解】首先化简为标准方程,,由方程形式可知,曲线的长轴长是8,短轴长是6,焦距是,离心率,,的长轴长是,短轴长是,焦距是,离心率,所以离心率相等.故选D.【题目点拨】本题考查了椭圆的几何性质,属于基础题型.7、A【解题分析】

根据复数除法运算求得,从而可得虚部.【题目详解】由得:本题正确选项:【题目点拨】本题考查复数虚部的求解问题,关键是通过复数除法运算得到的形式.8、D【解题分析】;,与没有包含关系,故为“既不充分也不必要条件”.9、B【解题分析】f(x)=sin2x﹣cos2x=2sin(2x﹣)的图象向左平移φ(0<φ<)个单位,得到g(x)=2sin(2x-2φ﹣).为偶函数,故得到,故得到2sin(-2φ﹣)=-2或2,.因为,故得到,k=-1,的值为.故答案为B.10、C【解题分析】因为数列为等比数列,所以,所以.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

将函数构造成的形式,用换元法令,在定义域上根据新函数的单调性求函数最小值,之后可得原函数最小值。【题目详解】由题得,,令,则函数在递增,可得的最小值为,则的最小值为.故答案为:【题目点拨】本题考查了换元法,以及函数的单调性,是基础题。12、【解题分析】

利用等差数列的通项公式、前n项和公式直接求解.【题目详解】∵等差数列{an}中,a3+a10=25,∴其前12项之和S126(a3+a10)=6×25=1.故答案为:1.【题目点拨】本题考查等差数列的前n项和的公式,考查等差数列的性质的应用,考查运算求解能力,是基础题.13、.【解题分析】

设由,求出点轨迹方程,可判断其轨迹为圆,点又在直线,转化为直线与圆有公共点,只需圆心到直线的距离小于半径,得到关于的不等式,求解,即可得出结论.【题目详解】设,,,,整理得,又点在直线,直线与圆共公共点,圆心到直线的距离,即.故答案为:.【题目点拨】本题考查求曲线的轨迹方程,考查直线与圆的位置关系,属于中档题.14、【解题分析】

根据两圆在点处的切线互相垂直,得出是直角三角形,求出,然后两圆相减求出公共弦的直线方程,运用点到直线的距离公式求出圆心到公共弦的距离,进而求出公共弦长.【题目详解】由题意,圆圆心坐标,半径,圆圆心坐标,半径,因为两圆相交于点,且两圆在点处的切线互相垂直,所以是直角三角形,,所以,由两点间距离公式,,所以,解得,所以圆:,两圆方程相减,得,即,所以公共弦:,圆心到公共弦的距离,故公共弦长故答案为:【题目点拨】本题主要考查两圆公共弦的方程、圆弦长的求法和点到直线的距离公式,考查学生的分析能力,属于基础题.15、,【解题分析】

求出函数的值域作为其反函数的定义域,再由求出其反函数的解析式,综合可得出答案.【题目详解】,则,由可得,,因此,函数的反函数是,.故答案为:,.【题目点拨】本题考查反三角函数的求解,解题时注意求出原函数的值域作为其反函数的定义域,考查计算能力,属于中等题.16、【解题分析】

直接利用倍角公式展开,即可得答案.【题目详解】由,得,即,.故答案为:.【题目点拨】本题考查三角函数的化简求值,考查倍角公式的应用,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)的单调递减区间为(2)【解题分析】

(1)由二倍角公式和两角和的正弦公式化函数为一个角的一个三角函数形式,然后得正弦函数的单调性求得减区间;(2)函数在区间上有两个零点可转化为函数与的图像有两个不同的交点.,利用函数图象可求解.【题目详解】(1)函数的最小正周期,故令,得故的单调递减区间为(2)函数在区间上有两个零点,即方程区间上有两个不同的实根,即函数与的图像有两个不同的交点.,故,结合单调性可知,要使函数与图像有两个不同的交点,则,所以【题目点拨】本题考查三角函数的图象与性质,考查二倍角公式和两角和的正弦公式,考查零点个数问题.解决函数零点个数问题通常需要转化与化归,即转化为函数图象交点个数问题,大多数情况是函数图象与直线交点个数问题.象本题,最后转化为求函数的单调性与极值(最值).18、(1)(2)【解题分析】试题分析:(1)解法1:由题意利用待定系数法可得⊙C方程为.解法2:由题意结合几何关系确定圆心坐标和半径的长度可得⊙C的方程为.(2)解法1:利用圆心到直线的距离与圆的半径的关系得到关系k的不等式,求解不等式可得.解法2:联立直线与圆的方程,结合可得.试题解析:(1)解法1:设圆的方程为,则,所以⊙C方程为.解法2:由于AB的中点为,,则线段AB的垂直平分线方程为而圆心C必为直线与直线的交点,由解得,即圆心,又半径为,故⊙C的方程为.(2)解法1:因为直线与⊙C总有公共点,则圆心到直线的距离不超过圆的半径,即,将其变形得,解得.解法2:由,因为直线与⊙C总有公共点,则,解得.点睛:判断直线与圆的位置关系时,若两方程已知或圆心到直线的距离易表达,则用几何法;若方程中含有参数,或圆心到直线的距离的表达较繁琐,则用代数法.19、(1),(2)【解题分析】

(1)利用三角函数的和差公式化简已知等式可得,结合为锐角可得的值.(2)由余弦定理可得,解得的值,根据三角形的面积公式即可求解.【题目详解】(1)∵,∴∵∴可得:∵A,C为锐角,∴,可得:(2)∵∴由余弦定理,可得:,即,解得:或3,因为为锐角三角形,所以需满足所以所以的面积为【题目点拨】本题主要考查了三角函数恒等变换及余弦定理,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.20、(1);(2);(3).【解题分析】

(1)计算出、的坐标,可计算出的坐标,再利用平面向量模长的坐标表示可计算出向量的模;(2)由可计算出的值;(3)由投影的定义得出向量在上的投影为可计算出结果.【题目详解】(1)、、,,,因此,;(2)由(1)知,,,所以;(3)由(2)知向量与的夹角的余弦为,且.所以向量在上的投影为.【题目点拨】本题考查平面向量的坐标运算以及平面向量夹角的坐标表示、以及向量投影的计算,解题时要熟悉平面向量坐标的运算律以及平面向量数量积、模、夹角的坐标运算,考查计算能力,属于基础题.21、(I)2;(II)的最小正周期是,.【解题分析】

(Ⅰ)直接利用三角函数关系式的恒等变换,把函数的关系式变形成正弦型函数,进一步求出函数的值.(Ⅱ)直接利用函数的关系式,求出

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论